Datasets:

Modalities:
Tabular
Text
Formats:
csv
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
pfilonenko commited on
Commit
77d7766
·
verified ·
1 Parent(s): 7043080

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -267,7 +267,7 @@ class simulation_for_machine_learning{
267
  int n = sample_sizes[jj];
268
 
269
  // ---- Simulation samples ----
270
- //competing hypothesis Í0
271
  Sample A0(*H0_1.D,n,Gw);
272
  Sample B0(*H0_1.D,n,Gw);
273
  if( per > 0 )
@@ -276,7 +276,7 @@ class simulation_for_machine_learning{
276
  B0.CensoredTypeThird(*H1_1.D,Gw);
277
  }
278
 
279
- //competing hypothesis Í1
280
  Sample A1(*H0_1.D,n,Gw);
281
  Sample B1(*H0_2.D,n,Gw);
282
  if( per > 0 )
@@ -286,7 +286,7 @@ class simulation_for_machine_learning{
286
  }
287
 
288
  // ---- Computation of the test statistics & Save to file ----
289
- //Sn and p-value computation under Í0
290
  FILE *ou = fopen(file_to_save, "a");
291
  auto perc1 = A0.RealCensoredPercent();
292
  auto perc2 = B0.RealCensoredPercent();
@@ -303,7 +303,7 @@ class simulation_for_machine_learning{
303
  }
304
  fprintf(ou, "\n");
305
 
306
- //Sn and p-value computation under Í1
307
  perc1 = A1.RealCensoredPercent();
308
  perc2 = B1.RealCensoredPercent();
309
  fprintf(ou,"%d;", iter);
@@ -328,7 +328,7 @@ class simulation_for_machine_learning{
328
  // Constructor of the class
329
  simulation_for_machine_learning(vector<HomogeneityTest*> &D)
330
  {
331
- int N = 40000; // number of the Monte-Carlo replications
332
  #pragma omp parallel for
333
  for(int k=0; k<N; k++)
334
  {
 
267
  int n = sample_sizes[jj];
268
 
269
  // ---- Simulation samples ----
270
+ //competing hypothesis H0
271
  Sample A0(*H0_1.D,n,Gw);
272
  Sample B0(*H0_1.D,n,Gw);
273
  if( per > 0 )
 
276
  B0.CensoredTypeThird(*H1_1.D,Gw);
277
  }
278
 
279
+ //competing hypothesis H1
280
  Sample A1(*H0_1.D,n,Gw);
281
  Sample B1(*H0_2.D,n,Gw);
282
  if( per > 0 )
 
286
  }
287
 
288
  // ---- Computation of the test statistics & Save to file ----
289
+ //Sn and p-value computation under H0
290
  FILE *ou = fopen(file_to_save, "a");
291
  auto perc1 = A0.RealCensoredPercent();
292
  auto perc2 = B0.RealCensoredPercent();
 
303
  }
304
  fprintf(ou, "\n");
305
 
306
+ //Sn and p-value computation under H1
307
  perc1 = A1.RealCensoredPercent();
308
  perc2 = B1.RealCensoredPercent();
309
  fprintf(ou,"%d;", iter);
 
328
  // Constructor of the class
329
  simulation_for_machine_learning(vector<HomogeneityTest*> &D)
330
  {
331
+ int N = 37650; // number of the Monte-Carlo replications
332
  #pragma omp parallel for
333
  for(int k=0; k<N; k++)
334
  {