Datasets:

Modalities:
Tabular
Text
Formats:
csv
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
pfilonenko commited on
Commit
9d6d049
·
verified ·
1 Parent(s): 9fe0d69

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -1
README.md CHANGED
@@ -71,6 +71,99 @@ In these files there are following fields:
71
 
72
  # Dataset Simulation
73
 
74
- For this dataset, the full source code is available for simulation by the Monte Carlo method.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
 
 
71
 
72
  # Dataset Simulation
73
 
74
+ For this dataset, the full source code (C++) is available for simulation by the Monte Carlo method. We presented the file main.cpp only.
75
+
76
+ ~~~
77
+ #include"simulation_for_machine_learning.h"
78
+
79
+ //Ñîçäàòü âñå êðèòåðèè
80
+ vector<HomogeneityTest*> AllTests()
81
+ {
82
+ vector<HomogeneityTest*> D;
83
+
84
+ // ---- Classical Two-Sample tests for Uncensored Case ----
85
+ //D.push_back( new HT_AndersonDarlingPetitt );
86
+ //D.push_back( new HT_KolmogorovSmirnovTest );
87
+ //D.push_back( new HT_LehmannRosenblatt );
88
+
89
+ // ---- Two-Sample tests for Right-Censored Case ----
90
+ D.push_back( new HT_Peto );
91
+ D.push_back( new HT_Gehan );
92
+ D.push_back( new HT_Logrank );
93
+
94
+ D.push_back( new HT_BagdonaviciusNikulinGeneralizedCox );
95
+ D.push_back( new HT_BagdonaviciusNikulinMultiple );
96
+ D.push_back( new HT_BagdonaviciusNikulinSingle );
97
+
98
+ D.push_back( new HT_QTest ); //based on the Kaplan-Meier estimator
99
+ D.push_back( new HT_MAX ); //Maximum Value test
100
+ D.push_back( new HT_SynthesisTest ); //MIN3 test
101
+
102
+ D.push_back( new HT_WeightedLogrank("logrank") );
103
+ D.push_back( new HT_WeightedLogrank("Tarone–Ware") );
104
+ D.push_back( new HT_WeightedLogrank("Breslow") );
105
+ D.push_back( new HT_WeightedLogrank("Peto–Prentice") );
106
+ D.push_back( new HT_WeightedLogrank("Prentice") );
107
+
108
+ D.push_back( new HT_WeightedKaplanMeyer );
109
+
110
+ return D;
111
+ }
112
+
113
+ // Example of two-sample testing using this code
114
+ void EXAMPLE_1(vector<HomogeneityTest*> &D)
115
+ {
116
+ // load the samples
117
+ Sample T1(".//samples//1Chemotherapy.txt");
118
+ Sample T2(".//samples//2Radiotherapy.txt");
119
+
120
+ // two-sample testing through selected tests
121
+ for(int j=0; j<D.size(); j++)
122
+ {
123
+ char test_name[512];
124
+ D[j]->TitleTest(test_name);
125
+
126
+
127
+ double Sn = D[j]->CalculateStatistic(T1, T2);
128
+ double pvalue = D[j]->p_value(T1, T2, 1000);
129
+
130
+ printf("%s\n", &test_name);
131
+ printf("\t Sn: %lf\n", Sn);
132
+ printf("\t pv: %lf\n", pvalue);
133
+ printf("--------------------------------");
134
+ }
135
+ }
136
+
137
+ // Example of the dataset simulation for the proposed ML-method
138
+ void EXAMPLE_2(vector<HomogeneityTest*> &D)
139
+ {
140
+ // Run dataset (train or test sample) simulation (results in ".//to_machine_learning_2024//")
141
+ simulation_for_machine_learning sm(D);
142
+ }
143
+
144
+ // init point
145
+ int main()
146
+ {
147
+ // Set the number of threads
148
+ int k = omp_get_max_threads() - 1;
149
+ //int k = 1;
150
+ omp_set_num_threads( k );
151
+
152
+ // Select two-sample tests
153
+ auto D = AllTests();
154
+
155
+ // Example of two-sample testing using this code
156
+ EXAMPLE_1(D);
157
+
158
+ // Example of the dataset simulation for the proposed ML-method
159
+ EXAMPLE_2(D);
160
+
161
+ // Freeing memory
162
+ ClearMemory(D);
163
+
164
+ printf("The mission is completed.\n");
165
+ return 0;
166
+ }
167
+ ~~~
168
 
169