task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Sidef
Sidef
for n in (1 .. 2**19) { var frac = 0   n.divisors.each {|d| frac += 1/d }   if (frac.is_int) { say "Sum of reciprocal divisors of #{n} = #{frac} exactly #{ frac == 2 ? '- perfect!' : '' }" } }
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Lua
Lua
print(0^0)
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#M2000_Interpreter
M2000 Interpreter
  Module Checkit { x=0 y=0 Print x**y=1, x^y=1 ' True True } Checkit  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Maple
Maple
0^0
http://rosettacode.org/wiki/Zebra_puzzle
Zebra puzzle
Zebra puzzle You are encouraged to solve this task according to the task description, using any language you may know. The Zebra puzzle, a.k.a. Einstein's Riddle, is a logic puzzle which is to be solved programmatically. It has several variants, one of them this:   There are five houses.   The English man lives in the red house.   The Swede has a dog.   The Dane drinks tea.   The green house is immediately to the left of the white house.   They drink coffee in the green house.   The man who smokes Pall Mall has birds.   In the yellow house they smoke Dunhill.   In the middle house they drink milk.   The Norwegian lives in the first house.   The man who smokes Blend lives in the house next to the house with cats.   In a house next to the house where they have a horse, they smoke Dunhill.   The man who smokes Blue Master drinks beer.   The German smokes Prince.   The Norwegian lives next to the blue house.   They drink water in a house next to the house where they smoke Blend. The question is, who owns the zebra? Additionally, list the solution for all the houses. Optionally, show the solution is unique. Related tasks   Dinesman's multiple-dwelling problem   Twelve statements
#AutoHotkey
AutoHotkey
REM The names (only used for printing the results): DIM Drink$(4), Nation$(4), Colr$(4), Smoke$(4), Animal$(4) Drink$() = "Beer", "Coffee", "Milk", "Tea", "Water" Nation$() = "Denmark", "England", "Germany", "Norway", "Sweden" Colr$() = "Blue", "Green", "Red", "White", "Yellow" Smoke$() = "Blend", "BlueMaster", "Dunhill", "PallMall", "Prince" Animal$() = "Birds", "Cats", "Dog", "Horse", "Zebra"   REM Some single-character tags: a$ = "A" : b$ = "B" : c$ = "C" : d$ = "D" : e$ = "E"   REM BBC BASIC Doesn't have enumerations! Beer$=a$  : Coffee$=b$  : Milk$=c$  : Tea$=d$  : Water$=e$ Denmark$=a$ : England$=b$  : Germany$=c$ : Norway$=d$  : Sweden$=e$ Blue$=a$  : Green$=b$  : Red$=c$  : White$=d$  : Yellow$=e$ Blend$=a$  : BlueMaster$=b$ : Dunhill$=c$ : PallMall$=d$ : Prince$=e$ Birds$=a$  : Cats$=b$  : Dog$=c$  : Horse$=d$  : Zebra$=e$   REM Create the 120 permutations of 5 objects: DIM perm$(120), x$(4) : x$() = a$, b$, c$, d$, e$ REPEAT p% += 1 perm$(p%) = x$(0)+x$(1)+x$(2)+x$(3)+x$(4) UNTIL NOT FNperm(x$())   REM Express the statements as conditional expressions: ex2$ = "INSTR(Nation$,England$) = INSTR(Colr$,Red$)" ex3$ = "INSTR(Nation$,Sweden$) = INSTR(Animal$,Dog$)" ex4$ = "INSTR(Nation$,Denmark$) = INSTR(Drink$,Tea$)" ex5$ = "INSTR(Colr$,Green$+White$) <> 0" ex6$ = "INSTR(Drink$,Coffee$) = INSTR(Colr$,Green$)" ex7$ = "INSTR(Smoke$,PallMall$) = INSTR(Animal$,Birds$)" ex8$ = "INSTR(Smoke$,Dunhill$) = INSTR(Colr$,Yellow$)" ex9$ = "MID$(Drink$,3,1) = Milk$" ex10$ = "LEFT$(Nation$,1) = Norway$" ex11$ = "ABS(INSTR(Smoke$,Blend$)-INSTR(Animal$,Cats$)) = 1" ex12$ = "ABS(INSTR(Smoke$,Dunhill$)-INSTR(Animal$,Horse$)) = 1" ex13$ = "INSTR(Smoke$,BlueMaster$) = INSTR(Drink$,Beer$)" ex14$ = "INSTR(Nation$,Germany$) = INSTR(Smoke$,Prince$)" ex15$ = "ABS(INSTR(Nation$,Norway$)-INSTR(Colr$,Blue$)) = 1" ex16$ = "ABS(INSTR(Smoke$,Blend$)-INSTR(Drink$,Water$)) = 1"   REM Solve: solutions% = 0 TIME = 0 FOR nation% = 1 TO 120 Nation$ = perm$(nation%) IF EVAL(ex10$) THEN FOR colr% = 1 TO 120 Colr$ = perm$(colr%) IF EVAL(ex5$) IF EVAL(ex2$) IF EVAL(ex15$) THEN FOR drink% = 1 TO 120 Drink$ = perm$(drink%) IF EVAL(ex9$) IF EVAL(ex4$) IF EVAL(ex6$) THEN FOR smoke% = 1 TO 120 Smoke$ = perm$(smoke%) IF EVAL(ex14$) IF EVAL(ex13$) IF EVAL(ex16$) IF EVAL(ex8$) THEN FOR animal% = 1 TO 120 Animal$ = perm$(animal%) IF EVAL(ex3$) IF EVAL(ex7$) IF EVAL(ex11$) IF EVAL(ex12$) THEN PRINT "House Drink Nation Colour Smoke Animal" FOR house% = 1 TO 5 PRINT ; house% ,; PRINT Drink$(ASCMID$(Drink$,house%)-65),; PRINT Nation$(ASCMID$(Nation$,house%)-65),; PRINT Colr$(ASCMID$(Colr$,house%)-65),; PRINT Smoke$(ASCMID$(Smoke$,house%)-65),; PRINT Animal$(ASCMID$(Animal$,house%)-65) NEXT solutions% += 1 ENDIF NEXT animal% ENDIF NEXT smoke% ENDIF NEXT drink% ENDIF NEXT colr% ENDIF NEXT nation% PRINT '"Number of solutions = "; solutions% PRINT "Solved in " ; TIME/100 " seconds" END   DEF FNperm(x$()) LOCAL i%, j% FOR i% = DIM(x$(),1)-1 TO 0 STEP -1 IF x$(i%) < x$(i%+1) EXIT FOR NEXT IF i% < 0 THEN = FALSE j% = DIM(x$(),1) WHILE x$(j%) <= x$(i%) j% -= 1 : ENDWHILE SWAP x$(i%), x$(j%) i% += 1 j% = DIM(x$(),1) WHILE i% < j% SWAP x$(i%), x$(j%) i% += 1 j% -= 1 ENDWHILE = TRUE
http://rosettacode.org/wiki/XML/XPath
XML/XPath
Perform the following three XPath queries on the XML Document below: //item[1]: Retrieve the first "item" element //price/text(): Perform an action on each "price" element (print it out) //name: Get an array of all the "name" elements XML Document: <inventory title="OmniCorp Store #45x10^3"> <section name="health"> <item upc="123456789" stock="12"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc="445322344" stock="18"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name="food"> <item upc="485672034" stock="653"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc="132957764" stock="44"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI */ /* program xpathXml.s */   /* Constantes */ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall   .equ NBMAXELEMENTS, 100   /*******************************************/ /* Structures */ /********************************************/ /* structure xmlNode*/ .struct 0 xmlNode_private: @ application data .struct xmlNode_private + 4 xmlNode_type: @ type number, must be second ! .struct xmlNode_type + 4 xmlNode_name: @ the name of the node, or the entity .struct xmlNode_name + 4 xmlNode_children: @ parent->childs link .struct xmlNode_children + 4 xmlNode_last: @ last child link .struct xmlNode_last + 4 xmlNode_parent: @ child->parent link .struct xmlNode_parent + 4 xmlNode_next: @ next sibling link .struct xmlNode_next + 4 xmlNode_prev: @ previous sibling link .struct xmlNode_prev + 4 xmlNode_doc: @ the containing document .struct xmlNode_doc + 4 xmlNode_ns: @ pointer to the associated namespace .struct xmlNode_ns + 4 xmlNode_content: @ the content .struct xmlNode_content + 4 xmlNode_properties: @ properties list .struct xmlNode_properties + 4 xmlNode_nsDef: @ namespace definitions on this node .struct xmlNode_nsDef + 4 xmlNode_psvi: @ for type/PSVI informations .struct xmlNode_psvi + 4 xmlNode_line: @ line number .struct xmlNode_line + 4 xmlNode_extra: @ extra data for XPath/XSLT .struct xmlNode_extra + 4 xmlNode_fin: /********************************************/ /* structure xmlNodeSet*/ .struct 0 xmlNodeSet_nodeNr: @ number of nodes in the set .struct xmlNodeSet_nodeNr + 4 xmlNodeSet_nodeMax: @ size of the array as allocated .struct xmlNodeSet_nodeMax + 4 xmlNodeSet_nodeTab: @ array of nodes in no particular order .struct xmlNodeSet_nodeTab + 4 xmlNodeSet_fin: /********************************************/ /* structure xmlXPathObject*/ .struct 0 xmlPathObj_type: @ .struct xmlPathObj_type + 4 xmlPathObj_nodesetval: @ .struct xmlPathObj_nodesetval + 4 xmlPathObj_boolval: @ .struct xmlPathObj_boolval + 4 xmlPathObj_floatval: @ .struct xmlPathObj_floatval + 4 xmlPathObj_stringval: @ .struct xmlPathObj_stringval + 4 xmlPathObj_user: @ .struct xmlPathObj_user + 4 xmlPathObj_index: @ .struct xmlPathObj_index + 4 xmlPathObj_user2: @ .struct xmlPathObj_user2 + 4 xmlPathObj_index2: @ .struct xmlPathObj_index2 + 4       /*********************************/ /* Initialized data */ /*********************************/ .data szMessEndpgm: .asciz "\nNormal end of program.\n" szMessDisVal: .asciz "\nDisplay set values.\n" szMessDisArea: .asciz "\nDisplay area values.\n" szFileName: .asciz "testXml.xml" szMessError: .asciz "Error detected !!!!. \n"     szLibName: .asciz "name" szLibPrice: .asciz "//price" szLibExtName: .asciz "//name" szCarriageReturn: .asciz "\n"     /*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 tbExtract: .skip 4 * NBMAXELEMENTS @ result extract area /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program ldr r0,iAdrszFileName bl xmlParseFile @ create doc mov r9,r0 @ doc address mov r0,r9 @ doc bl xmlDocGetRootElement @ get root bl xmlFirstElementChild @ get first section bl xmlFirstElementChild @ get first item bl xmlFirstElementChild @ get first name bl xmlNodeGetContent @ extract content bl affichageMess @ for display ldr r0,iAdrszCarriageReturn bl affichageMess   ldr r0,iAdrszMessDisVal bl affichageMess mov r0,r9 ldr r1,iAdrszLibPrice @ extract prices bl extractValue mov r0,r9 ldr r1,iAdrszLibExtName @ extact names bl extractValue ldr r0,iAdrszMessDisArea bl affichageMess mov r4,#0 @ display string result area ldr r5,iAdrtbExtract 1: ldr r0,[r5,r4,lsl #2] cmp r0,#0 beq 2f bl affichageMess ldr r0,iAdrszCarriageReturn bl affichageMess add r4,#1 b 1b   2: mov r0,r9 bl xmlFreeDoc bl xmlCleanupParser ldr r0,iAdrszMessEndpgm bl affichageMess b 100f 99: @ error ldr r0,iAdrszMessError bl affichageMess 100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call   iAdrszMessError: .int szMessError iAdrszMessEndpgm: .int szMessEndpgm iAdrszLibName: .int szLibName iAdrszLibPrice: .int szLibPrice iAdrszCarriageReturn: .int szCarriageReturn iAdrszFileName: .int szFileName iAdrszLibExtName: .int szLibExtName iAdrtbExtract: .int tbExtract iAdrszMessDisVal: .int szMessDisVal iAdrszMessDisArea: .int szMessDisArea /******************************************************************/ /* extract value of set */ /******************************************************************/ /* r0 contains the doc address /* r1 contains the address of the libel to extract */ extractValue: push {r1-r10,lr} @ save registres mov r4,r1 @ save address libel mov r9,r0 @ save doc ldr r8,iAdrtbExtract bl xmlXPathNewContext @ create context mov r10,r0 mov r1,r0 mov r0,r4 bl xmlXPathEvalExpression mov r5,r0 mov r0,r10 bl xmlXPathFreeContext @ free context cmp r5,#0 beq 100f ldr r4,[r5,#xmlPathObj_nodesetval] @ values set ldr r6,[r4,#xmlNodeSet_nodeNr] @ set size mov r7,#0 @ index ldr r4,[r4,#xmlNodeSet_nodeTab] @ area of nods 1: @ start loop ldr r3,[r4,r7,lsl #2] @ load node mov r0,r9 ldr r1,[r3,#xmlNode_children] @ load string value mov r2,#1 bl xmlNodeListGetString str r0,[r8,r7,lsl #2] @ store string pointer in area bl affichageMess @ and display string result ldr r0,iAdrszCarriageReturn bl affichageMess add r7,#1 cmp r7,r6 blt 1b 100: pop {r1-r10,lr} @ restaur registers */ bx lr @ return   /******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess: push {r0,r1,r2,r7,lr} @ save registres mov r2,#0 @ counter length 1: @ loop length calculation ldrb r1,[r0,r2] @ read octet start position + index cmp r1,#0 @ if 0 its over addne r2,r2,#1 @ else add 1 in the length bne 1b @ and loop @ so here r2 contains the length of the message mov r1,r0 @ address message in r1 mov r0,#STDOUT @ code to write to the standard output Linux mov r7, #WRITE @ code call system "write" svc #0 @ call systeme pop {r0,r1,r2,r7,lr} @ restaur registers */ bx lr @ return    
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI */ /* program yingyang.s */   /* REMARK 1 : this program use routines in a include file see task Include a file language arm assembly for the routine affichageMess conversion10 see at end of this program the instruction include */ /***************************************************************/ /* File Constantes see task Include a file for arm assembly */ /***************************************************************/ .include "../constantes.inc"   .equ SIZEMAXI, 78   /******************************************/ /* Initialized data */ /******************************************/ .data szMessDebutPgm: .asciz "Start program.\n" szMessFinPgm: .asciz "Program End ok.\n" szRetourLigne: .asciz "\n"   szMessErrComm: .asciz "Incomplete Command line  : yingyang <size> \n" /******************************************/ /* UnInitialized data */ /******************************************/ .bss szLine: .skip SIZEMAXI /******************************************/ /* code section */ /******************************************/ .text .global main main: @ entry of program mov fp,sp // copy stack address register r29 fp ldr r0,iAdrszMessDebutPgm bl affichageMess ldr r0,[fp] // parameter number command line cmp r0,#1 // correct ? ble erreurCommande // error   add r0,fp,#8 // address parameter 2 ldr r0,[r0] bl conversionAtoD cmp r0,#SIZEMAXI / 2 movgt r0,#(SIZEMAXI / 2) - 1 // limit size mov r10,r0 // size lsr r11,r10,#1 // R = size / 2 radius great circle mul r9,r11,r11 // R^2 lsr r12,r11,#1 // radius median circle lsr r8,r12,#1 // radius little circle   mov r2,#0 // y ldr r0,iAdrszLine 1: mov r1,#0 // x mov r5,#' ' mov r3,#SIZEMAXI 11: // move spaces in display line strb r5,[r0,r1] add r1,#1 cmp r1,r3 blt 11b mov r1,#0 // x 2: // begin loop sub r3,r1,r11 // x1 = x - R mul r4,r3,r3 // x1^2 sub r5,r2,r11 // y1 = y - R mul r6,r5,r5 // y1^2 add r6,r4 // add x1^2 y1^2 cmp r6,r9 // compare R^2 ble 3f mov r5,#' ' // not in great circle strb r5,[r0,r1,lsl #1] b 20f 3: // compute quadrant cmp r1,r11 bgt 10f // x > R cmp r2,r11 bgt 5f // y > R // quadrant 1 x < R and y < R sub r5,r2,r12 mul r7,r5,r5 // y1^2 add r7,r4 // y1^2 + x1^2 mul r6,r8,r8 // little r ^2 cmp r7,r8 bgt 4f mov r5,#' ' // in little circle strb r5,[r0,r1,lsl #1] b 20f 4: // in other part of great circle mov r5,#'.' strb r5,[r0,r1,lsl #1] b 20f 5: // quadrant 3 x < R and y > R mov r5,#3 mul r5,r10,r5 lsr r5,#2 sub r6,r2,r5 // y1 - pos little circle (= (size / 3) * 4 mul r7,r6,r6 // y1^2 add r7,r4 // y1^2 + x1^2 mul r6,r8,r8 // r little cmp r7,r8 bgt 6f mov r5,#' ' // in little circle strb r5,[r0,r1,lsl #1] b 20f 6: mul r6,r12,r12 cmp r7,r6 bge 7f mov r5,#'#' // in median circle strb r5,[r0,r1,lsl #1] b 20f 7: mov r5,#'.' // not in median strb r5,[r0,r1,lsl #1] b 20f 10: cmp r2,r11 bgt 15f // quadrant 2 sub r5,r2,r12 // y - center little mul r6,r5,r5 add r7,r4,r6 mul r6,r8,r8 cmp r7,r6 bge 11f mov r5,#' ' // in little circle strb r5,[r0,r1,lsl #1] b 20f 11: mul r6,r12,r12 cmp r7,r6 bge 12f mov r5,#'.' // in median circle strb r5,[r0,r1,lsl #1] b 20f 12: mov r5,#'#' // in great circle strb r5,[r0,r1,lsl #1] b 20f 15: // quadrant 4 mov r5,#3 mul r5,r10,r5 lsr r5,#2 sub r6,r2,r5 // y1 - pos little mul r7,r6,r6 // y1^2 add r7,r4 // y1^2 + x1^2 mul r6,r8,r8 // little r ^2 cmp r7,r8 bgt 16f mov r5,#' ' // in little circle strb r5,[r0,r1,lsl #1] b 20f 16: mov r5,#'#' strb r5,[r0,r1,lsl #1] b 20f 20: add r1,#1 // increment x cmp r1,r10 // size ? ble 2b // no -> loop lsl r1,#1 mov r5,#'\n' // add return line strb r5,[r0,r1] add r1,#1 mov r5,#0 // add final zéro strb r5,[r0,r1] bl affichageMess // and display line add r2,r2,#1 // increment y cmp r2,r10 // size ? ble 1b // no -> loop   ldr r0,iAdrszMessFinPgm bl affichageMess b 100f erreurCommande: ldr r0,iAdrszMessErrComm bl affichageMess mov r0,#1 // error code b 100f 100: // standard end of the program mov r0, #0 // return code mov r7, #EXIT // request to exit program svc 0 // perform the system call iAdrszMessDebutPgm: .int szMessDebutPgm iAdrszMessFinPgm: .int szMessFinPgm iAdrszMessErrComm: .int szMessErrComm iAdrszLine: .int szLine /***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc"    
http://rosettacode.org/wiki/Y_combinator
Y combinator
In strict functional programming and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The   Y combinator   is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators. Task Define the stateless   Y combinator   and use it to compute factorials and Fibonacci numbers from other stateless functions or lambda expressions. Cf Jim Weirich: Adventures in Functional Programming
#ATS
ATS
  (* ****** ****** *) // #include "share/atspre_staload.hats" // (* ****** ****** *) // fun myfix {a:type} ( f: lazy(a) -<cloref1> a ) : lazy(a) = $delay(f(myfix(f))) // val fact = myfix{int-<cloref1>int} ( lam(ff) => lam(x) => if x > 0 then x * !ff(x-1) else 1 ) (* ****** ****** *) // implement main0 () = println! ("fact(10) = ", !fact(10)) // (* ****** ****** *)  
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#AutoHotkey
AutoHotkey
n = 5 ; size v := x := y := 1 ; initial values Loop % n*n { ; for every array element a_%x%_%y% := v++ ; assign the next index If ((x+y)&1) ; odd diagonal If (x < n) ; while inside the square y -= y<2 ? 0 : 1, x++ ; move right-up Else y++ ; on the edge increment y, but not x: to even diagonal Else ; even diagonal If (y < n) ; while inside the square x -= x<2 ? 0 : 1, y++ ; move left-down Else x++ ; on the edge increment x, but not y: to odd diagonal }   Loop %n% { ; generate printout x := A_Index ; for each row Loop %n% ; and for each column t .= a_%x%_%A_Index% "`t" ; attach stored index t .= "`n" ; row is complete } MsgBox %t% ; show output
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#JavaScript
JavaScript
(() => { 'use strict';   // yellowstone :: Generator [Int] function* yellowstone() { // A non finite stream of terms in the // Yellowstone permutation of the natural numbers. // OEIS A098550 const nextWindow = ([p2, p1, rest]) => { const [rp2, rp1] = [p2, p1].map( relativelyPrime ); const go = xxs => { const [x, xs] = Array.from( uncons(xxs).Just ); return rp1(x) && !rp2(x) ? ( Tuple(x)(xs) ) : secondArrow(cons(x))( go(xs) ); }; return [p1, ...Array.from(go(rest))]; }; const A098550 = fmapGen(x => x[1])( iterate(nextWindow)( [2, 3, enumFrom(4)] ) ); yield 1 yield 2 while (true)( yield A098550.next().value ) };     // relativelyPrime :: Int -> Int -> Bool const relativelyPrime = a => // True if a is relatively prime to b. b => 1 === gcd(a)(b);     // ------------------------TEST------------------------ const main = () => console.log( take(30)( yellowstone() ) );     // -----------------GENERIC FUNCTIONS------------------   // Just :: a -> Maybe a const Just = x => ({ type: 'Maybe', Nothing: false, Just: x });   // Nothing :: Maybe a const Nothing = () => ({ type: 'Maybe', Nothing: true, });   // Tuple (,) :: a -> b -> (a, b) const Tuple = a => b => ({ type: 'Tuple', '0': a, '1': b, length: 2 });   // abs :: Num -> Num const abs = // Absolute value of a given number - without the sign. Math.abs;   // cons :: a -> [a] -> [a] const cons = x => xs => Array.isArray(xs) ? ( [x].concat(xs) ) : 'GeneratorFunction' !== xs .constructor.constructor.name ? ( x + xs ) : ( // cons(x)(Generator) function*() { yield x; let nxt = xs.next() while (!nxt.done) { yield nxt.value; nxt = xs.next(); } } )();   // enumFrom :: Enum a => a -> [a] function* enumFrom(x) { // A non-finite succession of enumerable // values, starting with the value x. let v = x; while (true) { yield v; v = 1 + v; } }   // fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b] const fmapGen = f => function*(gen) { let v = take(1)(gen); while (0 < v.length) { yield(f(v[0])) v = take(1)(gen) } };   // gcd :: Int -> Int -> Int const gcd = x => y => { const _gcd = (a, b) => (0 === b ? a : _gcd(b, a % b)), abs = Math.abs; return _gcd(abs(x), abs(y)); };   // iterate :: (a -> a) -> a -> Gen [a] const iterate = f => function*(x) { let v = x; while (true) { yield(v); v = f(v); } };   // length :: [a] -> Int const length = xs => // Returns Infinity over objects without finite // length. This enables zip and zipWith to choose // the shorter argument when one is non-finite, // like cycle, repeat etc (Array.isArray(xs) || 'string' === typeof xs) ? ( xs.length ) : Infinity;   // secondArrow :: (a -> b) -> ((c, a) -> (c, b)) const secondArrow = f => xy => // A function over a simple value lifted // to a function over a tuple. // f (a, b) -> (a, f(b)) Tuple(xy[0])( f(xy[1]) );   // take :: Int -> [a] -> [a] // take :: Int -> String -> String const take = n => // The first n elements of a list, // string of characters, or stream. xs => 'GeneratorFunction' !== xs .constructor.constructor.name ? ( xs.slice(0, n) ) : [].concat.apply([], Array.from({ length: n }, () => { const x = xs.next(); return x.done ? [] : [x.value]; }));   // uncons :: [a] -> Maybe (a, [a]) const uncons = xs => { // Just a tuple of the head of xs and its tail, // Or Nothing if xs is an empty list. const lng = length(xs); return (0 < lng) ? ( Infinity > lng ? ( Just(Tuple(xs[0])(xs.slice(1))) // Finite list ) : (() => { const nxt = take(1)(xs); return 0 < nxt.length ? ( Just(Tuple(nxt[0])(xs)) ) : Nothing(); })() // Lazy generator ) : Nothing(); };   // MAIN --- return main(); })();
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Icon_and_Unicon
Icon and Unicon
link printf,strings   procedure main() YS := YahooSearch("rosettacode") every 1 to 2 do { # 2 pages YS.readnext() YS.showinfo() } end   class YahooSearch(urlpat,page,response) #: class for Yahoo Search   method readnext() #: read the next page of search results self.page +:= 1 # can't find as w|w/o self readurl() end   method readurl() #: read the url url := sprintf(self.urlpat,(self.page-1)*10+1) m := open(url,"m") | stop("Unable to open : ",url) every (self.response := "") ||:= |read(m) close(m) self.response := deletec(self.response,"\x00") # kill stray NULs end   method showinfo() #: show the info of interest self.response ? repeat { (tab(find("<")) & ="<a class=\"yschttl spt\" href=\"") | break url := tab(find("\"")) & tab(find(">")+1) title := tab(find("<")) & ="</a></h3></div>" tab(find("<")) & =("<div class=\"abstr\">" | "<div class=\"sm-abs\">") abstr := tab(find("<")) & ="</div>"   printf("\nTitle : %i\n",title) printf("URL  : %i\n",url) printf("Abstr : %i\n",abstr) } end   initially(searchtext) #: initialize each instance urlpat := sprintf("http://search.yahoo.com/search?p=%s&b=%%d",searchtext) page := 0 end
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#TXR
TXR
@(next :args) @(define space)@/ */@(end) @(define mulop (nod))@\ @(local op)@\ @(space)@\ @(cases)@\ @{op /[*]/}@(bind nod @(intern op *user-package*))@\ @(or)@\ @{op /\//}@(bind (nod) @(list 'trunc))@\ @(end)@\ @(space)@\ @(end) @(define addop (nod))@\ @(local op)@(space)@{op /[+\-]/}@(space)@\ @(bind nod @(intern op *user-package*))@\ @(end) @(define number (nod))@\ @(local n)@(space)@{n /[0-9]+/}@(space)@\ @(bind nod @(int-str n 10))@\ @(end) @(define factor (nod))@(cases)(@(expr nod))@(or)@(number nod)@(end)@(end) @(define term (nod))@\ @(local op nod1 nod2)@\ @(cases)@\ @(factor nod1)@\ @(cases)@(mulop op)@(term nod2)@(bind nod (op nod1 nod2))@\ @(or)@(bind nod nod1)@\ @(end)@\ @(or)@\ @(addop op)@(factor nod1)@\ @(bind nod (op nod1))@\ @(end)@\ @(end) @(define expr (nod))@\ @(local op nod1 nod2)@\ @(term nod1)@\ @(cases)@(addop op)@(expr nod2)@(bind nod (op nod1 nod2))@\ @(or)@(bind nod nod1)@\ @(end)@\ @(end) @(cases) @ {source (expr e)} @ (output) source: @source AST: @(format nil "~s" e) value: @(eval e nil) @ (end) @(or) @ (maybe)@(expr e)@(end)@bad @ (output) erroneous suffix "@bad" @ (end) @(end)
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Ursala
Ursala
#import std #import nat #import flo   lex = ~=' '*~F+ rlc both -=digits # separate into tokens   parse = # build a tree   --<';'>; @iNX ~&l->rh ^/~&lt cases~&lhh\~&lhPNVrC { '*/': ^|C/~&hNV associate '*/', '+-': ^|C/~&hNV associate '*/+-', ');': @r ~&htitBPC+ associate '*/+-'}   associate "ops" = ~&tihdh2B-="ops"-> ~&thd2tth2hNCCVttt2C   traverse = *^ ~&v?\%ep ^H\~&vhthPX '+-*/'-$<plus,minus,times,div>@dh   evaluate = traverse+ parse+ lex
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Vlang
Vlang
import strings const ( dig = ["00", "01", "10"] dig1 = ["", "1", "10"] )   struct Zeckendorf { mut: d_val int d_len int }   fn new_zeck(xx string) Zeckendorf { mut z := Zeckendorf{} mut x := xx if x == "" { x = "0" } mut q := 1 mut i := x.len - 1 z.d_len = i / 2 for ; i >= 0; i-- { z.d_val += int(x[i]-'0'[0]) * q q *= 2 } return z }   fn (mut z Zeckendorf) a(ii int) { mut i:=ii for ; ; i++ { if z.d_len < i { z.d_len = i } j := (z.d_val >> u32(i*2)) & 3 if j in [0, 1] { return } else if j==2 { if ((z.d_val >> (u32(i+1) * 2)) & 1) != 1 { return } z.d_val += 1 << u32(i*2+1) return } else {// 3 z.d_val &= ~(3 << u32(i*2)) z.b((i + 1) * 2) } } }   fn (mut z Zeckendorf) b(p int) { mut pos := p if pos == 0 { z.inc() return } if ((z.d_val >> u32(pos)) & 1) == 0 { z.d_val += 1 << u32(pos) z.a(pos / 2) if pos > 1 { z.a(pos/2 - 1) } } else { z.d_val &= ~(1 << u32(pos)) z.b(pos + 1) mut temp := 1 if pos > 1 { temp = 2 } z.b(pos - temp) } }   fn (mut z Zeckendorf) c(p int) { mut pos := p if ((z.d_val >> u32(pos)) & 1) == 1 { z.d_val &= ~(1 << u32(pos)) return } z.c(pos + 1) if pos > 0 { z.b(pos - 1) } else { z.inc() } }   fn (mut z Zeckendorf) inc() { z.d_val++ z.a(0) }   fn (mut z1 Zeckendorf) plus_assign(z2 Zeckendorf) { for gn := 0; gn < (z2.d_len+1)*2; gn++ { if ((z2.d_val >> u32(gn)) & 1) == 1 { z1.b(gn) } } }   fn (mut z1 Zeckendorf) minus_assign(z2 Zeckendorf) { for gn := 0; gn < (z2.d_len+1)*2; gn++ { if ((z2.d_val >> u32(gn)) & 1) == 1 { z1.c(gn) } }   for z1.d_len > 0 && ((z1.d_val>>u32(z1.d_len*2))&3) == 0 { z1.d_len-- } }   fn (mut z1 Zeckendorf) times_assign(z2 Zeckendorf) { mut na := z2.copy() mut nb := z2.copy() mut nr := Zeckendorf{} for i := 0; i <= (z1.d_len+1)*2; i++ { if ((z1.d_val >> u32(i)) & 1) > 0 { nr.plus_assign(nb) } nt := nb.copy() nb.plus_assign(na) na = nt.copy() } z1.d_val = nr.d_val z1.d_len = nr.d_len }   fn (z Zeckendorf) copy() Zeckendorf { return Zeckendorf{z.d_val, z.d_len} }   fn (z1 Zeckendorf) compare(z2 Zeckendorf) int { if z1.d_val < z2.d_val { return -1 } else if z1.d_val > z2.d_val { return 1 } else { return 0 } }   fn (z Zeckendorf) str() string { if z.d_val == 0 { return "0" } mut sb := strings.new_builder(128) sb.write_string(dig1[(z.d_val>>u32(z.d_len*2))&3]) for i := z.d_len - 1; i >= 0; i-- { sb.write_string(dig[(z.d_val>>u32(i*2))&3]) } return sb.str() }   fn main() { println("Addition:") mut g := new_zeck("10") g.plus_assign(new_zeck("10")) println(g) g.plus_assign(new_zeck("10")) println(g) g.plus_assign(new_zeck("1001")) println(g) g.plus_assign(new_zeck("1000")) println(g) g.plus_assign(new_zeck("10101")) println(g)   println("\nSubtraction:") g = new_zeck("1000") g.minus_assign(new_zeck("101")) println(g) g = new_zeck("10101010") g.minus_assign(new_zeck("1010101")) println(g)   println("\nMultiplication:") g = new_zeck("1001") g.times_assign(new_zeck("101")) println(g) g = new_zeck("101010") g.plus_assign(new_zeck("101")) println(g) }
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Wren
Wren
import "/trait" for Comparable   class Zeckendorf is Comparable { static dig { ["00", "01", "10"] } static dig1 { ["", "1", "10"] }   construct new(x) { var q = 1 var i = x.count - 1 _dLen = (i / 2).floor _dVal = 0 while (i >= 0) { _dVal = _dVal + (x[i].bytes[0] - 48) * q q = q * 2 i = i - 1 } }   dLen { _dLen } dVal { _dVal }   dLen=(v) { _dLen = v } dVal=(v) { _dVal = v }   a(n) { var i = n while (true) { if (_dLen < i) _dLen = i var j = (_dVal >> (i * 2)) & 3 if (j == 0 || j == 1) return if (j == 2) { if (((_dVal >> ((i + 1) * 2)) & 1) != 1) return _dVal = _dVal + (1 << (i * 2 + 1)) return } if (j == 3) { _dVal = _dVal & ~(3 << (i * 2)) b((i + 1) * 2) } i = i + 1 } }   b(pos) { if (pos == 0) { var thiz = this thiz.inc return } if (((_dVal >> pos) & 1) == 0) { _dVal = _dVal + (1 << pos) a((pos / 2).floor) if (pos > 1) a((pos / 2).floor - 1) } else { _dVal = _dVal & ~(1 << pos) b(pos + 1) b(pos - ((pos > 1) ? 2 : 1)) } }   c(pos) { if (((_dVal >> pos) & 1) == 1) { _dVal = _dVal & ~(1 << pos) return } c(pos + 1) if (pos > 0) { b(pos - 1) } else { var thiz = this thiz.inc } }   inc { _dVal = _dVal + 1 a(0) return this }   plusAssign(other) { for (gn in 0...(other.dLen + 1) * 2) { if (((other.dVal >> gn) & 1) == 1) b(gn) } }   minusAssign(other) { for (gn in 0...(other.dLen + 1) * 2) { if (((other.dVal >> gn) & 1) == 1) c(gn) } while ((((_dVal >> _dLen * 2) & 3) == 0) || (_dLen == 0)) _dLen = _dLen - 1 }   timesAssign(other) { var na = other.copy() var nb = other.copy() var nr = Zeckendorf.new("0") for (i in 0..(_dLen + 1) * 2) { if (((_dVal >> i) & 1) > 0) nr.plusAssign(nb) var nt = nb.copy() nb.plusAssign(na) na = nt.copy() } _dVal = nr.dVal _dLen = nr.dLen }   compare(other) { (_dVal - other.dVal).sign }   toString { if (_dVal == 0) return "0" var sb = Zeckendorf.dig1[(_dVal >> (_dLen * 2)) & 3] if (_dLen > 0) { for (i in _dLen - 1..0) { sb = sb + Zeckendorf.dig[(_dVal >> (i * 2)) & 3] } } return sb }   copy() { var z = Zeckendorf.new("0") z.dVal = _dVal z.dLen = _dLen return z } }   var Z = Zeckendorf // type alias System.print("Addition:") var g = Z.new("10") g.plusAssign(Z.new("10")) System.print(g) g.plusAssign(Z.new("10")) System.print(g) g.plusAssign(Z.new("1001")) System.print(g) g.plusAssign(Z.new("1000")) System.print(g) g.plusAssign(Z.new("10101")) System.print(g) System.print("\nSubtraction:") g = Z.new("1000") g.minusAssign(Z.new("101")) System.print(g) g = Z.new("10101010") g.minusAssign(Z.new("1010101")) System.print(g) System.print("\nMultiplication:") g = Z.new("1001") g.timesAssign(Z.new("101")) System.print(g) g = Z.new("101010") g.plusAssign(Z.new("101")) System.print(g)
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Ring
Ring
  load "stdlib.ring"   see "working..." + nl see "The first 220 Zumkeller numbers are:" + nl   permut = [] zumind = [] zumodd = [] limit = 19305 num1 = 0 num2 = 0   for n = 2 to limit zumkeller = [] zumList = [] permut = [] calmo = [] zumind = [] num = 0 nold = 0 for m = 1 to n if n % m = 0 num = num + 1 add(zumind,m) ok next for p = 1 to num add(zumList,1) add(zumList,2) next permut(zumList) lenZum = len(zumList)   for n2 = 1 to len(permut)/lenZum str = "" for m = (n2-1)*lenZum+1 to n2*lenZum str = str + string(permut[m]) next if str != "" strNum = number(str) add(calmo,strNum) ok next   calmo = sort(calmo)   for x = len(calmo) to 2 step -1 if calmo[x] = calmo[x-1] del(calmo,x) ok next   zumkeller = [] calmoLen = len(string(calmo[1])) calmoLen2 = calmoLen/2 for y = 1 to len(calmo) tmpStr = string(calmo[y]) tmp1 = left(tmpStr,calmoLen2) tmp2 = number(tmp1) add(zumkeller,tmp2) next   zumkeller = sort(zumkeller)   for x = len(zumkeller) to 2 step -1 if zumkeller[x] = zumkeller[x-1] del(zumkeller,x) ok next   for z = 1 to len(zumkeller) zumsum1 = 0 zumsum2 = 0 zum1 = [] zum2 = []   for m = 1 to len(string(zumkeller[z])) zumstr = string(zumkeller[z]) tmp = number(zumstr[m]) if tmp = 1 add(zum1,zumind[m]) else add(zum2,zumind[m]) ok next   for z1 = 1 to len(zum1) zumsum1 = zumsum1 + zum1[z1] next   for z2 = 1 to len(zum2) zumsum2 = zumsum2 + zum2[z2] next   if zumsum1 = zumsum2 num1 = num1 + 1 if n != nold if num1 < 221 if (n-1)%22 = 0 see nl + " " + n else see " " + n ok ok if zumsum1%2 = 1 num2 = num2 + 1 if num2 < 41 add(zumodd,n) ok ok ok nold = n ok next next   see "The first 40 odd Zumkeller numbers are:" + nl for n = 1 to len(zumodd) if (n-1)%8 = 0 see nl + " " + zumodd[n] else see " " + zumodd[n] ok next   see nl + "done..." + nl   func permut(list) for perm = 1 to factorial(len(list)) for i = 1 to len(list) add(permut,list[i]) next perm(list) next   func perm(a) elementcount = len(a) if elementcount < 1 return ok pos = elementcount-1 while a[pos] >= a[pos+1] pos -= 1 if pos <= 0 permutationReverse(a, 1, elementcount) return ok end last = elementcount while a[last] <= a[pos] last -= 1 end temp = a[pos] a[pos] = a[last] a[last] = temp permReverse(a, pos+1, elementcount)   func permReverse(a,first,last) while first < last temp = a[first] a[first] = a[last] a[last] = temp first += 1 last -= 1 end  
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Ruby
Ruby
class Integer   def divisors res = [1, self] (2..Integer.sqrt(self)).each do |n| div, mod = divmod(n) res << n << div if mod.zero? end res.uniq.sort end   def zumkeller? divs = divisors sum = divs.sum return false unless sum.even? && sum >= self*2 half = sum / 2 max_combi_size = divs.size / 2 1.upto(max_combi_size).any? do |combi_size| divs.combination(combi_size).any?{|combi| combi.sum == half} end end   end   def p_enum(enum, cols = 10, col_width = 8) enum.each_slice(cols) {|slice| puts "%#{col_width}d"*slice.size % slice} end   puts "#{n=220} Zumkeller numbers:" p_enum 1.step.lazy.select(&:zumkeller?).take(n), 14, 6   puts "\n#{n=40} odd Zumkeller numbers:" p_enum 1.step(by: 2).lazy.select(&:zumkeller?).take(n)   puts "\n#{n=40} odd Zumkeller numbers not ending with 5:" p_enum 1.step(by: 2).lazy.select{|x| x % 5 > 0 && x.zumkeller?}.take(n)  
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Frink
Frink
a = 5^4^3^2 as = "$a" // Coerce to string println["Length=" + length[as] + ", " + left[as,20] + "..." + right[as,20]]
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#F.C5.8Drmul.C3.A6
Fōrmulæ
n:=5^(4^(3^2));; s := String(n);; m := Length(s); # 183231 s{[1..20]}; # "62060698786608744707" s{[m-19..m]}; # "92256259918212890625"
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#GAP
GAP
n:=5^(4^(3^2));; s := String(n);; m := Length(s); # 183231 s{[1..20]}; # "62060698786608744707" s{[m-19..m]}; # "92256259918212890625"
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Ruby
Ruby
class ZhangSuen NEIGHBOUR8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] # 8 neighbors CIRCULARS = NEIGHBOUR8 + [NEIGHBOUR8.first] # P2, ... P9, P2 def initialize(str, black="#") s1 = str.each_line.map{|line| line.chomp.each_char.map{|c| c==black ? 1 : 0}} s2 = s1.map{|line| line.map{0}} xrange = 1 ... s1.size-1 yrange = 1 ... s1[0].size-1 printout(s1) begin @r = 0 xrange.each{|x| yrange.each{|y| s2[x][y] = s1[x][y] - zs(s1,x,y,1)}} # Step 1 xrange.each{|x| yrange.each{|y| s1[x][y] = s2[x][y] - zs(s2,x,y,0)}} # Step 2 end until @r == 0 printout(s1) end def zs(ng,x,y,g) return 0 if ng[x][y] == 0 or # P1 (ng[x-1][y] + ng[x][y+1] + ng[x+g][y-1+g]) == 3 or # P2, P4, P6/P8 (ng[x-1+g][y+g] + ng[x+1][y] + ng[x][y-1]) == 3 # P4/P2, P6, P8 bp1 = NEIGHBOUR8.inject(0){|res,(i,j)| res += ng[x+i][y+j]} # B(P1) return 0 if bp1 < 2 or 6 < bp1 ap1 = CIRCULARS.map{|i,j| ng[x+i][y+j]}.each_cons(2).count{|a,b| a<b} # A(P1) return 0 if ap1 != 1 @r = 1 end def printout(image) puts image.map{|row| row.map{|col| " #"[col]}.join} end end   str = <<EOS ........................................................... .#################...................#############......... .##################...............################......... .###################............##################......... .########.....#######..........###################......... ...######.....#######.........#######.......######......... ...######.....#######........#######....................... ...#################.........#######....................... ...################..........#######....................... ...#################.........#######....................... ...######.....#######........#######....................... ...######.....#######........#######....................... ...######.....#######.........#######.......######......... .########.....#######..........###################......... .########.....#######.######....##################.######.. .########.....#######.######......################.######.. .########.....#######.######.........#############.######.. ........................................................... EOS   ZhangSuen.new(str)   task_example = <<EOS 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 EOS   ZhangSuen.new(task_example, "1")
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Java
Java
import java.util.*;   class Zeckendorf { public static String getZeckendorf(int n) { if (n == 0) return "0"; List<Integer> fibNumbers = new ArrayList<Integer>(); fibNumbers.add(1); int nextFib = 2; while (nextFib <= n) { fibNumbers.add(nextFib); nextFib += fibNumbers.get(fibNumbers.size() - 2); } StringBuilder sb = new StringBuilder(); for (int i = fibNumbers.size() - 1; i >= 0; i--) { int fibNumber = fibNumbers.get(i); sb.append((fibNumber <= n) ? "1" : "0"); if (fibNumber <= n) n -= fibNumber; } return sb.toString(); }   public static void main(String[] args) { for (int i = 0; i <= 20; i++) System.out.println("Z(" + i + ")=" + getZeckendorf(i)); } }
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#CLIPS
CLIPS
(deffacts initial-state (door-count 100) )   (deffunction toggle (?state) (switch ?state (case "open" then "closed") (case "closed" then "open") ) )   (defrule create-doors-and-visits (door-count ?count) => (loop-for-count (?num 1 ?count) do (assert (door ?num "closed")) (assert (visit-from ?num ?num)) ) (assert (doors initialized)) )   (defrule visit (door-count ?max)  ?visit <- (visit-from ?num ?step)  ?door <- (door ?num ?state) => (retract ?visit) (retract ?door) (assert (door ?num (toggle ?state))) (if (<= (+ ?num ?step) ?max) then (assert (visit-from (+ ?num ?step) ?step)) ) )   (defrule start-printing (doors initialized) (not (visit-from ? ?)) => (printout t "These doors are open:" crlf) (assert (print-from 1)) )   (defrule print-door (door-count ?max)  ?pf <- (print-from ?num) (door ?num ?state) => (retract ?pf) (if (= 0 (str-compare "open" ?state)) then (printout t ?num " ") ) (if (< ?num ?max) then (assert (print-from (+ ?num 1))) else (printout t crlf "All other doors are closed." crlf) ) )
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Forth
Forth
create MyArray 1 , 2 , 3 , 4 , 5 , 5 cells allot here constant MyArrayEnd   30 MyArray 7 cells + ! MyArray 7 cells + @ . \ 30   : .array MyArrayEnd MyArray do I @ . cell +loop ;
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#REXX
REXX
/*REXX program demonstrates how to support some math functions for complex numbers. */ x = '(5,3i)' /*define X ─── can use I i J or j */ y = "( .5, 6j)" /*define Y " " " " " " " */   say ' addition: ' x " + " y ' = ' Cadd(x, y) say ' subtraction: ' x " - " y ' = ' Csub(x, y) say 'multiplication: ' x " * " y ' = ' Cmul(x, y) say ' division: ' x " ÷ " y ' = ' Cdiv(x, y) say ' inverse: ' x " = " Cinv(x, y) say ' conjugate of: ' x " = " Conj(x, y) say ' negation of: ' x " = " Cneg(x, y) exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ Conj: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a , -b ) Cadd: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a+c , b+d ) Csub: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a-c , b-d ) Cmul: procedure; parse arg a ',' b,c ',' d; call C#; return C$( ac-bd , bc+ad) Cdiv: procedure; parse arg a ',' b,c ',' d; call C#; return C$((ac+bd)/s, (bc-ad)/s) Cinv: return Cdiv(1, arg(1)) Cneg: return Cmul(arg(1), -1) C_: return word(translate(arg(1), , '{[(JjIi)]}') 0, 1) /*get # or 0*/ C#: a=C_(a); b=C_(b); c=C_(c); d=C_(d); ac=a*c; ad=a*d; bc=b*c; bd=b*d;s=c*c+d*d; return C$: parse arg r,c; _='['r; if c\=0 then _=_","c'j'; return _"]" /*uses j */
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Slate
Slate
54 / 7. 20 reciprocal. (5 / 6) reciprocal. (5 / 6) as: Float.
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
0^0
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#MATLAB_.2F_Octave
MATLAB / Octave
0^0 complex(0,0)^0
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Maxima
Maxima
0^0;
http://rosettacode.org/wiki/Zebra_puzzle
Zebra puzzle
Zebra puzzle You are encouraged to solve this task according to the task description, using any language you may know. The Zebra puzzle, a.k.a. Einstein's Riddle, is a logic puzzle which is to be solved programmatically. It has several variants, one of them this:   There are five houses.   The English man lives in the red house.   The Swede has a dog.   The Dane drinks tea.   The green house is immediately to the left of the white house.   They drink coffee in the green house.   The man who smokes Pall Mall has birds.   In the yellow house they smoke Dunhill.   In the middle house they drink milk.   The Norwegian lives in the first house.   The man who smokes Blend lives in the house next to the house with cats.   In a house next to the house where they have a horse, they smoke Dunhill.   The man who smokes Blue Master drinks beer.   The German smokes Prince.   The Norwegian lives next to the blue house.   They drink water in a house next to the house where they smoke Blend. The question is, who owns the zebra? Additionally, list the solution for all the houses. Optionally, show the solution is unique. Related tasks   Dinesman's multiple-dwelling problem   Twelve statements
#BBC_BASIC
BBC BASIC
REM The names (only used for printing the results): DIM Drink$(4), Nation$(4), Colr$(4), Smoke$(4), Animal$(4) Drink$() = "Beer", "Coffee", "Milk", "Tea", "Water" Nation$() = "Denmark", "England", "Germany", "Norway", "Sweden" Colr$() = "Blue", "Green", "Red", "White", "Yellow" Smoke$() = "Blend", "BlueMaster", "Dunhill", "PallMall", "Prince" Animal$() = "Birds", "Cats", "Dog", "Horse", "Zebra"   REM Some single-character tags: a$ = "A" : b$ = "B" : c$ = "C" : d$ = "D" : e$ = "E"   REM BBC BASIC Doesn't have enumerations! Beer$=a$  : Coffee$=b$  : Milk$=c$  : Tea$=d$  : Water$=e$ Denmark$=a$ : England$=b$  : Germany$=c$ : Norway$=d$  : Sweden$=e$ Blue$=a$  : Green$=b$  : Red$=c$  : White$=d$  : Yellow$=e$ Blend$=a$  : BlueMaster$=b$ : Dunhill$=c$ : PallMall$=d$ : Prince$=e$ Birds$=a$  : Cats$=b$  : Dog$=c$  : Horse$=d$  : Zebra$=e$   REM Create the 120 permutations of 5 objects: DIM perm$(120), x$(4) : x$() = a$, b$, c$, d$, e$ REPEAT p% += 1 perm$(p%) = x$(0)+x$(1)+x$(2)+x$(3)+x$(4) UNTIL NOT FNperm(x$())   REM Express the statements as conditional expressions: ex2$ = "INSTR(Nation$,England$) = INSTR(Colr$,Red$)" ex3$ = "INSTR(Nation$,Sweden$) = INSTR(Animal$,Dog$)" ex4$ = "INSTR(Nation$,Denmark$) = INSTR(Drink$,Tea$)" ex5$ = "INSTR(Colr$,Green$+White$) <> 0" ex6$ = "INSTR(Drink$,Coffee$) = INSTR(Colr$,Green$)" ex7$ = "INSTR(Smoke$,PallMall$) = INSTR(Animal$,Birds$)" ex8$ = "INSTR(Smoke$,Dunhill$) = INSTR(Colr$,Yellow$)" ex9$ = "MID$(Drink$,3,1) = Milk$" ex10$ = "LEFT$(Nation$,1) = Norway$" ex11$ = "ABS(INSTR(Smoke$,Blend$)-INSTR(Animal$,Cats$)) = 1" ex12$ = "ABS(INSTR(Smoke$,Dunhill$)-INSTR(Animal$,Horse$)) = 1" ex13$ = "INSTR(Smoke$,BlueMaster$) = INSTR(Drink$,Beer$)" ex14$ = "INSTR(Nation$,Germany$) = INSTR(Smoke$,Prince$)" ex15$ = "ABS(INSTR(Nation$,Norway$)-INSTR(Colr$,Blue$)) = 1" ex16$ = "ABS(INSTR(Smoke$,Blend$)-INSTR(Drink$,Water$)) = 1"   REM Solve: solutions% = 0 TIME = 0 FOR nation% = 1 TO 120 Nation$ = perm$(nation%) IF EVAL(ex10$) THEN FOR colr% = 1 TO 120 Colr$ = perm$(colr%) IF EVAL(ex5$) IF EVAL(ex2$) IF EVAL(ex15$) THEN FOR drink% = 1 TO 120 Drink$ = perm$(drink%) IF EVAL(ex9$) IF EVAL(ex4$) IF EVAL(ex6$) THEN FOR smoke% = 1 TO 120 Smoke$ = perm$(smoke%) IF EVAL(ex14$) IF EVAL(ex13$) IF EVAL(ex16$) IF EVAL(ex8$) THEN FOR animal% = 1 TO 120 Animal$ = perm$(animal%) IF EVAL(ex3$) IF EVAL(ex7$) IF EVAL(ex11$) IF EVAL(ex12$) THEN PRINT "House Drink Nation Colour Smoke Animal" FOR house% = 1 TO 5 PRINT ; house% ,; PRINT Drink$(ASCMID$(Drink$,house%)-65),; PRINT Nation$(ASCMID$(Nation$,house%)-65),; PRINT Colr$(ASCMID$(Colr$,house%)-65),; PRINT Smoke$(ASCMID$(Smoke$,house%)-65),; PRINT Animal$(ASCMID$(Animal$,house%)-65) NEXT solutions% += 1 ENDIF NEXT animal% ENDIF NEXT smoke% ENDIF NEXT drink% ENDIF NEXT colr% ENDIF NEXT nation% PRINT '"Number of solutions = "; solutions% PRINT "Solved in " ; TIME/100 " seconds" END   DEF FNperm(x$()) LOCAL i%, j% FOR i% = DIM(x$(),1)-1 TO 0 STEP -1 IF x$(i%) < x$(i%+1) EXIT FOR NEXT IF i% < 0 THEN = FALSE j% = DIM(x$(),1) WHILE x$(j%) <= x$(i%) j% -= 1 : ENDWHILE SWAP x$(i%), x$(j%) i% += 1 j% = DIM(x$(),1) WHILE i% < j% SWAP x$(i%), x$(j%) i% += 1 j% -= 1 ENDWHILE = TRUE
http://rosettacode.org/wiki/XML/XPath
XML/XPath
Perform the following three XPath queries on the XML Document below: //item[1]: Retrieve the first "item" element //price/text(): Perform an action on each "price" element (print it out) //name: Get an array of all the "name" elements XML Document: <inventory title="OmniCorp Store #45x10^3"> <section name="health"> <item upc="123456789" stock="12"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc="445322344" stock="18"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name="food"> <item upc="485672034" stock="653"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc="132957764" stock="44"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>
#AutoHotkey
AutoHotkey
FileRead, inventory, xmlfile.xml   RegExMatch(inventory, "<item.*?</item>", item1) MsgBox % item1   pos = 1 While, pos := RegExMatch(inventory, "<price>(.*?)</price>", price, pos + 1) MsgBox % price1   While, pos := RegExMatch(inventory, "<name>.*?</name>", name, pos + 1) names .= name . "`n" MsgBox % names
http://rosettacode.org/wiki/XML/XPath
XML/XPath
Perform the following three XPath queries on the XML Document below: //item[1]: Retrieve the first "item" element //price/text(): Perform an action on each "price" element (print it out) //name: Get an array of all the "name" elements XML Document: <inventory title="OmniCorp Store #45x10^3"> <section name="health"> <item upc="123456789" stock="12"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc="445322344" stock="18"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name="food"> <item upc="485672034" stock="653"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc="132957764" stock="44"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>
#Bracmat
Bracmat
{Retrieve the first "item" element} ( nestML$(get$("doc.xml",X,ML))  :  ? ( inventory . ?,? (section.?,? ((item.?):?item) ?) ? )  ? & out$(toML$!item) )   {Perform an action on each "price" element (print it out)} ( nestML$(get$("doc.xml",X,ML))  :  ? ( inventory .  ? ,  ? ( section .  ? ,  ? ( item .  ? ,  ? ( price .  ? ,  ?price & out$!price & ~ )  ? )  ? )  ? )  ? | )   {Get an array of all the "name" elements} (  :?anArray & nestML$(get$("doc.xml",X,ML))  :  ? ( inventory .  ? ,  ? ( section .  ? ,  ? ( item .  ? ,  ? ( name .  ? ,  ?name & !anArray !name:?anArray & ~ )  ? )  ? )  ? )  ? | out$!anArray {Not truly an array, but a list.} );
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#Asymptote
Asymptote
unitsize(1 inch);   fill(scale(6)*unitsquare, invisible);   picture yinyang(pair center, real radius) { picture p; fill(p, unitcircle, white); fill(p, arc(0, S, N) -- cycle, black); fill(p, circle(N/2, 1/2), white); fill(p, circle(S/2, 1/2), black); fill(p, circle(N/2, 1/5), black); fill(p, circle(S/2, 1/5), white); draw(p, unitcircle, linewidth((1/32) * inch) + gray(0.5)); return shift(center) * scale(radius) * p; }   add(yinyang((1 + 1/4, 4 + 3/4), 1)); add(yinyang((3 + 3/4, 2 + 1/4), 2));
http://rosettacode.org/wiki/Y_combinator
Y combinator
In strict functional programming and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The   Y combinator   is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators. Task Define the stateless   Y combinator   and use it to compute factorials and Fibonacci numbers from other stateless functions or lambda expressions. Cf Jim Weirich: Adventures in Functional Programming
#BlitzMax
BlitzMax
SuperStrict   'Boxed type so we can just use object arrays for argument lists Type Integer Field val:Int Function Make:Integer(_val:Int) Local i:Integer = New Integer i.val = _val Return i End Function End Type     'Higher-order function type - just a procedure attached to a scope Type Func Abstract Method apply:Object(args:Object[]) Abstract End Type   'Function definitions - extend with fields as locals and implement apply as body Type Scope Extends Func Abstract Field env:Scope   'Constructor - bind an environment to a procedure Function lambda:Scope(env:Scope) Abstract   Method _init:Scope(_env:Scope) 'Helper to keep constructors small env = _env ; Return Self End Method End Type     'Based on the following definition: '(define (Y f) ' (let ((_r (lambda (r) (f (lambda a (apply (r r) a)))))) ' (_r _r)))   'Y (outer) Type Y Extends Scope Field f:Func 'Parameter - gets closed over   Function lambda:Scope(env:Scope) 'Necessary due to highly limited constructor syntax Return (New Y)._init(env) End Function   Method apply:Func(args:Object[]) f = Func(args[0]) Local _r:Func = YInner1.lambda(Self) Return Func(_r.apply([_r])) End Method End Type   'First lambda within Y Type YInner1 Extends Scope Field r:Func 'Parameter - gets closed over   Function lambda:Scope(env:Scope) Return (New YInner1)._init(env) End Function   Method apply:Func(args:Object[]) r = Func(args[0]) Return Func(Y(env).f.apply([YInner2.lambda(Self)])) End Method End Type   'Second lambda within Y Type YInner2 Extends Scope Field a:Object[] 'Parameter - not really needed, but good for clarity   Function lambda:Scope(env:Scope) Return (New YInner2)._init(env) End Function   Method apply:Object(args:Object[]) a = args Local r:Func = YInner1(env).r Return Func(r.apply([r])).apply(a) End Method End Type     'Based on the following definition: '(define fac (Y (lambda (f) ' (lambda (x) ' (if (<= x 0) 1 (* x (f (- x 1)))))))   Type FacL1 Extends Scope Field f:Func 'Parameter - gets closed over   Function lambda:Scope(env:Scope) Return (New FacL1)._init(env) End Function   Method apply:Object(args:Object[]) f = Func(args[0]) Return FacL2.lambda(Self) End Method End Type   Type FacL2 Extends Scope Function lambda:Scope(env:Scope) Return (New FacL2)._init(env) End Function   Method apply:Object(args:Object[]) Local x:Int = Integer(args[0]).val If x <= 0 Then Return Integer.Make(1) ; Else Return Integer.Make(x * Integer(FacL1(env).f.apply([Integer.Make(x - 1)])).val) End Method End Type     'Based on the following definition: '(define fib (Y (lambda (f) ' (lambda (x) ' (if (< x 2) x (+ (f (- x 1)) (f (- x 2)))))))   Type FibL1 Extends Scope Field f:Func 'Parameter - gets closed over   Function lambda:Scope(env:Scope) Return (New FibL1)._init(env) End Function   Method apply:Object(args:Object[]) f = Func(args[0]) Return FibL2.lambda(Self) End Method End Type   Type FibL2 Extends Scope Function lambda:Scope(env:Scope) Return (New FibL2)._init(env) End Function   Method apply:Object(args:Object[]) Local x:Int = Integer(args[0]).val If x < 2 Return Integer.Make(x) Else Local f:Func = FibL1(env).f Local x1:Int = Integer(f.apply([Integer.Make(x - 1)])).val Local x2:Int = Integer(f.apply([Integer.Make(x - 2)])).val Return Integer.Make(x1 + x2) EndIf End Method End Type     'Now test Local _Y:Func = Y.lambda(Null)   Local fac:Func = Func(_Y.apply([FacL1.lambda(Null)])) Print Integer(fac.apply([Integer.Make(10)])).val   Local fib:Func = Func(_Y.apply([FibL1.lambda(Null)])) Print Integer(fib.apply([Integer.Make(10)])).val
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#AutoIt
AutoIt
  #include <Array.au3> $Array = ZigZag(5) _ArrayDisplay($Array)   Func ZigZag($int) Local $av_array[$int][$int] Local $x = 1, $y = 1 For $I = 0 To $int ^ 2 -1 $av_array[$x-1][$y-1] = $I If Mod(($x + $y), 2) = 0 Then ;Even if ($y < $int) Then $y += 1 Else $x += 2 EndIf if ($x > 1) Then $x -= 1 Else ; ODD if ($x < $int) Then $x += 1 Else $y += 2 EndIf If $y > 1 Then $y -= 1 EndIf Next Return $av_array EndFunc ;==>ZigZag  
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#jq
jq
  # jq optimizes the recursive call of _gcd in the following: def gcd(a;b): def _gcd: if .[1] != 0 then [.[1], .[0] % .[1]] | _gcd else .[0] end; [a,b] | _gcd ;   # emit the yellowstone sequence as a stream def yellowstone: 1,2,3, ({ a: [2, 3], # the last two items only b: {"1": true, "2": true, "3" : true}, # a record, to avoid having to save the entire history start: 4 } | foreach range(1; infinite) as $n (.; first( .b as $b | .start = first( range(.start;infinite) | select($b[tostring]|not) ) | foreach range(.start; infinite) as $i (.; .emit = null | ($i|tostring) as $is | if .b[$is] then . # "a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2)" elif (gcd($i; .a[1]) == 1) and (gcd($i; .a[0]) > 1) then .emit = $i | .a = [.a[1], $i] | .b[$is] = true else . end; select(.emit)) ); .emit ));  
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Julia
Julia
using Plots   function yellowstone(N) a = [1, 2, 3] b = Dict(1 => 1, 2 => 1, 3 => 1) start = 4 while length(a) < N inseries = true for i in start:typemax(Int) if haskey(b, i) if inseries start += 1 end else inseries = false end if !haskey(b, i) && (gcd(i, a[end]) == 1) && (gcd(i, a[end - 1]) > 1) push!(a, i) b[i] = 1 break end end end return a end   println("The first 30 entries of the Yellowstone permutation:\n", yellowstone(30))   x = 1:100 y = yellowstone(100) plot(x, y)  
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Java
Java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.MalformedURLException; import java.net.URISyntaxException; import java.net.URL; import java.net.URLDecoder; import java.net.URLEncoder; import java.util.ArrayList; import java.util.List; import java.util.regex.Matcher; import java.util.regex.Pattern;   class YahooSearch { private String query; // Page number private int page = 1; // Regexp to look for the individual results in the returned page private static final Pattern pattern = Pattern.compile( "<a class=\"yschttl spt\" href=\"[^*]+?\\*\\*([^\"]+?)\">(.+?)</a></h3>.*?<div class=\"(?:sm-abs|abstr)\">(.+?)</div>");   public YahooSearch(String query) { this.query = query; }   public List<YahooResult> search() throws MalformedURLException, URISyntaxException, IOException { // Build the search string, starting with the Yahoo search URL, // then appending the query and optionally the page number (if > 1) StringBuilder searchUrl = new StringBuilder("http://search.yahoo.com/search?"); searchUrl.append("p=").append(URLEncoder.encode(query, "UTF-8")); if (page > 1) {searchUrl.append("&b=").append((page - 1) * 10 + 1);} // Query the Yahoo search engine URL url = new URL(searchUrl.toString()); List<YahooResult> result = new ArrayList<YahooResult>(); StringBuilder sb = new StringBuilder(); // Get the search results using a buffered reader BufferedReader in = null; try { in = new BufferedReader(new InputStreamReader(url.openStream())); // Read the results line by line String line = in.readLine(); while (line != null) { sb.append(line); line = in.readLine(); } } catch (IOException ioe) { ioe.printStackTrace(); } finally { try {in.close();} catch (Exception ignoreMe) {} } String searchResult = sb.toString(); // Look for the individual results by matching the regexp pattern Matcher matcher = pattern.matcher(searchResult); while (matcher.find()) { // Extract the result URL, title and excerpt String resultUrl = URLDecoder.decode(matcher.group(1), "UTF-8"); String resultTitle = matcher.group(2).replaceAll("</?b>", "").replaceAll("<wbr ?/?>", ""); String resultContent = matcher.group(3).replaceAll("</?b>", "").replaceAll("<wbr ?/?>", ""); // Create a new YahooResult and add to the list result.add(new YahooResult(resultUrl, resultTitle, resultContent)); } return result; }   public List<YahooResult> search(int page) throws MalformedURLException, URISyntaxException, IOException { // Set the page number and search this.page = page; return search(); }   public List<YahooResult> nextPage() throws MalformedURLException, URISyntaxException, IOException { // Increment the page number and search page++; return search(); }   public List<YahooResult> previousPage() throws MalformedURLException, URISyntaxException, IOException { // Decrement the page number and search; if the page number is 1 return an empty list if (page > 1) { page--; return search(); } else return new ArrayList<YahooResult>(); } }   class YahooResult { private URL url; private String title; private String content;   public URL getUrl() { return url; }   public void setUrl(URL url) { this.url = url; }   public void setUrl(String url) throws MalformedURLException { this.url = new URL(url); }   public String getTitle() { return title; }   public void setTitle(String title) { this.title = title; }   public String getContent() { return content; }   public void setContent(String content) { this.content = content; }   public YahooResult(URL url, String title, String content) { setUrl(url); setTitle(title); setContent(content); }   public YahooResult(String url, String title, String content) throws MalformedURLException { setUrl(url); setTitle(title); setContent(content); }   @Override public String toString() { StringBuilder sb = new StringBuilder(); if (title != null) { sb.append(",title=").append(title); } if (url != null) { sb.append(",url=").append(url); } return sb.charAt(0) == ',' ? sb.substring(1) : sb.toString(); } }   public class TestYahooSearch { public static void main(String[] args) throws MalformedURLException, URISyntaxException, IOException { // Create a new search YahooSearch search = new YahooSearch("Rosetta code"); // Get the search results List<YahooResult> results = search.search(); // Show the search results for (YahooResult result : results) { System.out.println(result.toString()); } } }
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Wren
Wren
import "/pattern" for Pattern   /* if string is empty, returns zero */ var toDoubleOrZero = Fn.new { |s| var n = Num.fromString(s) return n ? n : 0 }   var multiply = Fn.new { |s| var b = s.split("*").map { |t| toDoubleOrZero.call(t) }.toList return (b[0] * b[1]).toString }   var divide = Fn.new { |s| var b = s.split("/").map { |t| toDoubleOrZero.call(t) }.toList return (b[0] / b[1]).toString }   var add = Fn.new { |s| var p1 = Pattern.new("/+", Pattern.start) var p2 = Pattern.new("+1/+") var t = p1.replaceAll(s, "") t = p2.replaceAll(t, "+") var b = t.split("+").map { |u| toDoubleOrZero.call(u) }.toList return (b[0] + b[1]).toString }   var subtract = Fn.new { |s| var p = Pattern.new("[/+-|-/+]") var t = p.replaceAll(s, "-") if (t.contains("--")) return add.call(t.replace("--", "+")) var b = t.split("-").map { |u| toDoubleOrZero.call(u) }.toList return ((b.count == 3) ? -b[1] - b[2] : b[0] - b[1]).toString }   var evalExp = Fn.new { |s| var p = Pattern.new("[(|)|/s]") var t = p.replaceAll(s, "") var i = "*/" var pMD = Pattern.new("+1/f/i~/n+1/f", Pattern.within, i) var pM = Pattern.new("*") var pAS = Pattern.new("~-+1/f+1/n+1/f") var pA = Pattern.new("/d/+")   while (true) { var match = pMD.find(t) if (!match) break var exp = match.text var match2 = pM.find(exp) t = match2 ? t.replace(exp, multiply.call(exp)) : t.replace(exp, divide.call(exp)) }   while (true) { var match = pAS.find(t) if (!match) break var exp = match.text var match2 = pA.find(exp) t = match2 ? t.replace(exp, add.call(exp)) : t.replace(exp, subtract.call(exp)) } return t }   var evalArithmeticExp = Fn.new { |s| var p1 = Pattern.new("/s") var p2 = Pattern.new("/+", Pattern.start) var t = p1.replaceAll(s, "") t = p2.replaceAll(t, "") var i = "()" var pPara = Pattern.new("(+0/I)", Pattern.within, i) while (true) { var match = pPara.find(t) if (!match) break var exp = match.text t = t.replace(exp, evalExp.call(exp)) } return toDoubleOrZero.call(evalExp.call(t)) }   [ "2+3", "2+3/4", "2*3-4", "2*(3+4)+5/6", "2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10", "2*-3--4+-0.25", "-4 - 3", "((((2))))+ 3 * 5", "1 + 2 * (3 + (4 * 5 + 6 * 7 * 8) - 9) / 10", "1 + 2*(3 - 2*(3 - 2)*((2 - 4)*5 - 22/(7 + 2*(3 - 1)) - 1)) + 1" ].each { |s| System.print("%(s) = %(evalArithmeticExp.call(s))") }
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Rust
Rust
  use std::convert::TryInto;   /// Gets all divisors of a number, including itself fn get_divisors(n: u32) -> Vec<u32> { let mut results = Vec::new();   for i in 1..(n / 2 + 1) { if n % i == 0 { results.push(i); } } results.push(n); results }   /// Calculates whether the divisors can be partitioned into two disjoint /// sets that sum to the same value fn is_summable(x: i32, divisors: &[u32]) -> bool { if !divisors.is_empty() { if divisors.contains(&(x as u32)) { return true; } else if let Some((first, t)) = divisors.split_first() { return is_summable(x - *first as i32, &t) || is_summable(x, &t); } } false }   /// Calculates whether the number is a Zumkeller number /// Zumkeller numbers are the set of numbers whose divisors can be partitioned /// into two disjoint sets that sum to the same value. Each sum must contain /// divisor values that are not in the other sum, and all of the divisors must /// be in one or the other. fn is_zumkeller_number(number: u32) -> bool { if number % 18 == 6 || number % 18 == 12 { return true; }   let div = get_divisors(number); let divisor_sum: u32 = div.iter().sum(); if divisor_sum == 0 { return false; } if divisor_sum % 2 == 1 { return false; }   // numbers where n is odd and the abundance is even are Zumkeller numbers let abundance = divisor_sum as i32 - 2 * number as i32; if number % 2 == 1 && abundance > 0 && abundance % 2 == 0 { return true; }   let half = divisor_sum / 2; return div.contains(&half) || (div.iter().filter(|&&d| d < half).count() > 0 && is_summable(half.try_into().unwrap(), &div)); }   fn main() { println!("\nFirst 220 Zumkeller numbers:"); let mut counter: u32 = 0; let mut i: u32 = 0; while counter < 220 { if is_zumkeller_number(i) { print!("{:>3}", i); counter += 1; print!("{}", if counter % 20 == 0 { "\n" } else { "," }); } i += 1; }   println!("\nFirst 40 odd Zumkeller numbers:"); let mut counter: u32 = 0; let mut i: u32 = 3; while counter < 40 { if is_zumkeller_number(i) { print!("{:>5}", i); counter += 1; print!("{}", if counter % 20 == 0 { "\n" } else { "," }); } i += 2; } }  
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Sidef
Sidef
func is_Zumkeller(n) {   return false if n.is_prime return false if n.is_square   var sigma = n.sigma   # n must have an even abundance return false if (sigma.is_odd || (sigma < 2*n))   # true if n is odd and has an even abundance return true if n.is_odd # conjecture   var divisors = n.divisors   for k in (2 .. divisors.end) { divisors.combinations(k, {|*a| if (2*a.sum == sigma) { return true } }) }   return false }   say "First 220 Zumkeller numbers:" say (1..Inf -> lazy.grep(is_Zumkeller).first(220).join(' '))   say "\nFirst 40 odd Zumkeller numbers: " say (1..Inf `by` 2 -> lazy.grep(is_Zumkeller).first(40).join(' '))   say "\nFirst 40 odd Zumkeller numbers not divisible by 5: " say (1..Inf `by` 2 -> lazy.grep { _ % 5 != 0 }.grep(is_Zumkeller).first(40).join(' '))
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Go
Go
package main   import ( "fmt" "math/big" )   func main() { x := big.NewInt(2) x = x.Exp(big.NewInt(3), x, nil) x = x.Exp(big.NewInt(4), x, nil) x = x.Exp(big.NewInt(5), x, nil) str := x.String() fmt.Printf("5^(4^(3^2)) has %d digits: %s ... %s\n", len(str), str[:20], str[len(str)-20:], ) }
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Sidef
Sidef
class ZhangSuen(str, black="1") { const NEIGHBOURS = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] # 8 neighbors const CIRCULARS = (NEIGHBOURS + [NEIGHBOURS.first]) # P2, ... P9, P2   has r = 0 has image = [[]]   method init { var s1 = str.lines.map{|line| line.chars.map{|c| c==black ? 1 : 0 }} var s2 = s1.len.of { s1[0].len.of(0) } var xr = range(1, s1.end-1) var yr = range(1, s1[0].end-1) do { r = 0 xr.each{|x| yr.each{|y| s2[x][y] = (s1[x][y] - self.zs(s1,x,y,1)) }} # Step 1 xr.each{|x| yr.each{|y| s1[x][y] = (s2[x][y] - self.zs(s2,x,y,0)) }} # Step 2 } while !r.is_zero image = s1 }   method zs(ng,x,y,g) { (ng[x][y] == 0) -> || (ng[x-1][y] + ng[x][y+1] + ng[x+g][y+g - 1] == 3) -> || (ng[x+g - 1][y+g] + ng[x+1][y] + ng[x][y-1] == 3) -> && return 0   var bp1 = NEIGHBOURS.map {|p| ng[x+p[0]][y+p[1]] }.sum # B(P1) return 0 if ((bp1 < 2) || (6 < bp1))   var ap1 = 0 CIRCULARS.map {|p| ng[x+p[0]][y+p[1]] }.each_cons(2, {|a,b| ++ap1 if (a < b) # A(P1) })   return 0 if (ap1 != 1) r = 1 }   method display { image.each{|row| say row.map{|col| col ? '#' : ' ' }.join } } }   var text = <<EOS 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 EOS   ZhangSuen.new(text, black: "1").display
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#JavaScript
JavaScript
(() => { 'use strict';   const main = () => unlines( map(n => concat(zeckendorf(n)), enumFromTo(0, 20) ) );   // zeckendorf :: Int -> String const zeckendorf = n => { const go = (n, x) => n < x ? ( Tuple(n, '0') ) : Tuple(n - x, '1') return 0 < n ? ( snd(mapAccumL( go, n, reverse(fibUntil(n)) )) ) : ['0']; };   // fibUntil :: Int -> [Int] const fibUntil = n => cons(1, takeWhile(x => n >= x, map(snd, iterateUntil( tpl => n <= fst(tpl), tpl => { const x = snd(tpl); return Tuple(x, x + fst(tpl)); }, Tuple(1, 2) ))));   // GENERIC FUNCTIONS ----------------------------   // Tuple (,) :: a -> b -> (a, b) const Tuple = (a, b) => ({ type: 'Tuple', '0': a, '1': b, length: 2 });   // concat :: [[a]] -> [a] // concat :: [String] -> String const concat = xs => 0 < xs.length ? (() => { const unit = 'string' !== typeof xs[0] ? ( [] ) : ''; return unit.concat.apply(unit, xs); })() : [];   // cons :: a -> [a] -> [a] const cons = (x, xs) => Array.isArray(xs) ? ( [x].concat(xs) ) : (x + xs);   // enumFromTo :: Int -> Int -> [Int] const enumFromTo = (m, n) => m <= n ? iterateUntil( x => n <= x, x => 1 + x, m ) : [];   // fst :: (a, b) -> a const fst = tpl => tpl[0];   // iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a] const iterateUntil = (p, f, x) => { const vs = [x]; let h = x; while (!p(h))(h = f(h), vs.push(h)); return vs; };   // map :: (a -> b) -> [a] -> [b] const map = (f, xs) => xs.map(f);   // 'The mapAccumL function behaves like a combination of map and foldl; // it applies a function to each element of a list, passing an accumulating // parameter from left to right, and returning a final value of this // accumulator together with the new list.' (See Hoogle)   // mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y]) const mapAccumL = (f, acc, xs) => xs.reduce((a, x, i) => { const pair = f(a[0], x, i); return Tuple(pair[0], a[1].concat(pair[1])); }, Tuple(acc, []));   // reverse :: [a] -> [a] const reverse = xs => 'string' !== typeof xs ? ( xs.slice(0).reverse() ) : xs.split('').reverse().join('');   // snd :: (a, b) -> b const snd = tpl => tpl[1];   // tail :: [a] -> [a] const tail = xs => 0 < xs.length ? xs.slice(1) : [];   // takeWhile :: (a -> Bool) -> [a] -> [a] // takeWhile :: (Char -> Bool) -> String -> String const takeWhile = (p, xs) => { const lng = xs.length; return 0 < lng ? xs.slice( 0, until( i => i === lng || !p(xs[i]), i => 1 + i, 0 ) ) : []; };   // unlines :: [String] -> String const unlines = xs => xs.join('\n');   // until :: (a -> Bool) -> (a -> a) -> a -> a const until = (p, f, x) => { let v = x; while (!p(v)) v = f(v); return v; };   // MAIN --- return main(); })();
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Clojure
Clojure
(defn doors [] (let [doors (into-array (repeat 100 false))] (doseq [pass (range 1 101) i (range (dec pass) 100 pass) ] (aset doors i (not (aget doors i)))) doors))   (defn open-doors [] (for [[d n] (map vector (doors) (iterate inc 1)) :when d] n))   (defn print-open-doors [] (println "Open doors after 100 passes:" (apply str (interpose ", " (open-doors)))))
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Fortran
Fortran
integer a (10)
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#RLaB
RLaB
  >> x = sqrt(-1) 0 + 1i >> y = 10 + 5i 10 + 5i >> z = 5*x-y -10 + 0i >> isreal(z) 1  
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Smalltalk
Smalltalk
st> 54/7 54/7 st> 54/7 + 1 61/7 st> 54/7 < 50 true st> 20 reciprocal 1/20 st> (5/6) reciprocal 6/5 st> (5/6) asFloat 0.8333333333333334
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Mercury
Mercury
:- module zero_to_the_zero_power. :- interface.   :- import_module io.   :- pred main(io::di, io::uo) is det.   :- implementation.   :- import_module float, int, integer, list, string.   main(!IO) :- io.format(" int.pow(0, 0) = %d\n", [i(pow(0, 0))], !IO), io.format("integer.pow(zero, zero) = %s\n", [s(to_string(pow(zero, zero)))], !IO), io.format(" float.pow(0.0, 0) = %.1f\n", [f(pow(0.0, 0))], !IO).   :- end_module zero_to_the_zero_power.
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Microsoft_Small_Basic
Microsoft Small Basic
TextWindow.WriteLine(Math.Power(0,0))
http://rosettacode.org/wiki/Zebra_puzzle
Zebra puzzle
Zebra puzzle You are encouraged to solve this task according to the task description, using any language you may know. The Zebra puzzle, a.k.a. Einstein's Riddle, is a logic puzzle which is to be solved programmatically. It has several variants, one of them this:   There are five houses.   The English man lives in the red house.   The Swede has a dog.   The Dane drinks tea.   The green house is immediately to the left of the white house.   They drink coffee in the green house.   The man who smokes Pall Mall has birds.   In the yellow house they smoke Dunhill.   In the middle house they drink milk.   The Norwegian lives in the first house.   The man who smokes Blend lives in the house next to the house with cats.   In a house next to the house where they have a horse, they smoke Dunhill.   The man who smokes Blue Master drinks beer.   The German smokes Prince.   The Norwegian lives next to the blue house.   They drink water in a house next to the house where they smoke Blend. The question is, who owns the zebra? Additionally, list the solution for all the houses. Optionally, show the solution is unique. Related tasks   Dinesman's multiple-dwelling problem   Twelve statements
#Bracmat
Bracmat
( (English Swede Dane Norwegian German,) (red green white yellow blue,(red.English.)) (dog birds cats horse zebra,(dog.?.Swede.)) ( tea coffee milk beer water , (tea.?.?.Dane.) (coffee.?.green.?.) ) ( "Pall Mall" Dunhill Blend "Blue Master" Prince , ("Blue Master".beer.?.?.?.) ("Pall Mall".?.birds.?.?.) (Dunhill.?.?.yellow.?.) (Prince.?.?.?.German.) ) ( 1 2 3 4 5 , (3.?.milk.?.?.?.) (1.?.?.?.?.Norwegian.) )  : ?properties & ( relations = next leftOf . ( next = a b A B .  !arg:(?S,?A,?B) & !S:? (?a.!A) ?:? (?b.!B) ? & (!a+1:!b|!b+1:!a) ) & ( leftOf = a b A B .  !arg:(?S,?A,?B) & !S:? (?a.!A) ?:? (?b.!B) ? & !a+1:!b ) & leftOf $ (!arg,(?.?.?.green.?.),(?.?.?.white.?.)) & next$(!arg,(Blend.?.?.?.?.),(?.?.cats.?.?.)) & next $ (!arg,(?.?.horse.?.?.),(Dunhill.?.?.?.?.)) & next $ (!arg,(?.?.?.?.Norwegian.),(?.?.?.blue.?.)) & next$(!arg,(?.water.?.?.?.),(Blend.?.?.?.?.)) ) & ( props = a constraint constraints house houses , remainingToDo shavedToDo toDo value values z .  !arg:(?toDo.?shavedToDo.?house.?houses) & (  !toDo:(?values,?constraints) ?remainingToDo &  !values  : (  ?a ( %@?value &  !constraints  : (  ? ( !value .  ?constraint & !house:!constraint )  ? | ~(  ? ( ? .  ?constraint & !house:!constraint )  ? | ? (!value.?) ? ) ) ) ( ?z & props $ ( !remainingToDo . !shavedToDo (!a !z,!constraints) . (!value.!house) . !houses ) ) | & relations$!houses & out$(Solution !houses) ) |  !toDo: & props$(!shavedToDo...!house !houses) ) ) & props$(!properties...) & done );
http://rosettacode.org/wiki/XML/XPath
XML/XPath
Perform the following three XPath queries on the XML Document below: //item[1]: Retrieve the first "item" element //price/text(): Perform an action on each "price" element (print it out) //name: Get an array of all the "name" elements XML Document: <inventory title="OmniCorp Store #45x10^3"> <section name="health"> <item upc="123456789" stock="12"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc="445322344" stock="18"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name="food"> <item upc="485672034" stock="653"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc="132957764" stock="44"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>
#C
C
  #include <libxml/parser.h> #include <libxml/xpath.h>   xmlDocPtr getdoc (char *docname) { xmlDocPtr doc; doc = xmlParseFile(docname);   return doc; }   xmlXPathObjectPtr getnodeset (xmlDocPtr doc, xmlChar *xpath){   xmlXPathContextPtr context; xmlXPathObjectPtr result;   context = xmlXPathNewContext(doc);   result = xmlXPathEvalExpression(xpath, context); xmlXPathFreeContext(context);   return result; }   int main(int argc, char **argv) {   if (argc <= 2) { printf("Usage: %s <XML Document Name> <XPath expression>\n", argv[0]); return 0; }   char *docname; xmlDocPtr doc; xmlChar *xpath = (xmlChar*) argv[2]; xmlNodeSetPtr nodeset; xmlXPathObjectPtr result; int i; xmlChar *keyword;   docname = argv[1]; doc = getdoc(docname); result = getnodeset (doc, xpath); if (result) { nodeset = result->nodesetval; for (i=0; i < nodeset->nodeNr; i++) { xmlNodePtr titleNode = nodeset->nodeTab[i]; keyword = xmlNodeListGetString(doc, titleNode->xmlChildrenNode, 1); printf("Value %d: %s\n",i+1, keyword); xmlFree(keyword); } xmlXPathFreeObject (result); } xmlFreeDoc(doc); xmlCleanupParser(); return 0; }  
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#AutoHotkey
AutoHotkey
Yin_and_Yang(50, 50, A_ScriptDir "\YinYang1.png") Yin_and_Yang(300, 300,A_ScriptDir "\YinYang2.png")   Yin_and_Yang(width, height, fileName , color1=0xFFFFFFFF, color2=0xFF000000, outlineWidth=1){   pToken := gdip_Startup() pBitmap := gdip_CreateBitmap(w := width, h := height) w-=1, h-=1 pGraphics:= gdip_GraphicsFromImage(pBitmap) pBrushW := gdip_BrushCreateSolid(color1) pBrushB := gdip_BrushCreateSolid(color2)   gdip_SetSmoothingMode(pGraphics, 4) ; Antialiasing   If (outlineWidth){ pPen := gdip_CreatePen(0xFF000000, outlineWidth) gdip_DrawEllipse(pGraphics, pPen, 0, 0, w, h) gdip_DeletePen(pPen) }   gdip_FillPie(pGraphics, pBrushB, 0, 0, w, h, -90, 180) gdip_FillPie(pGraphics, pBrushW, 0, 0, w, h, 90, 180) gdip_FillEllipse(pGraphics, pBrushB, w//4, h//2, w//2, h//2) gdip_FillEllipse(pGraphics, pBrushW, w//4, 0 , w//2, h//2) gdip_FillEllipse(pGraphics, pBrushB, 5*w//12, h//6, w//6, h//6) gdip_FillEllipse(pGraphics, pBrushW, 5*w//12, 4*h//6,w//6,h//6)   r := gdip_SaveBitmapToFile(pBitmap, filename)   ; cleanup: gdip_DeleteBrush(pBrushW), gdip_deleteBrush(pBrushB) gdip_DisposeImage(pBitmap) gdip_DeleteGraphics(pGraphics) gdip_Shutdown(pToken) return r }
http://rosettacode.org/wiki/Y_combinator
Y combinator
In strict functional programming and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The   Y combinator   is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators. Task Define the stateless   Y combinator   and use it to compute factorials and Fibonacci numbers from other stateless functions or lambda expressions. Cf Jim Weirich: Adventures in Functional Programming
#Bracmat
Bracmat
(λx.x)y
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#AWK
AWK
  # syntax: GAWK -f ZIG-ZAG_MATRIX.AWK [-v offset={0|1}] [size] BEGIN { # offset: "0" prints 0 to size^2-1 while "1" prints 1 to size^2 offset = (offset == "") ? 0 : offset size = (ARGV[1] == "") ? 5 : ARGV[1] if (offset !~ /^[01]$/) { exit(1) } if (size !~ /^[0-9]+$/) { exit(1) } width = length(size ^ 2 - 1 + offset) + 1 i = j = 1 for (n=0; n<=size^2-1; n++) { # build array arr[i-1,j-1] = n + offset if ((i+j) % 2 == 0) { if (j < size) { j++ } else { i+=2 } if (i > 1) { i-- } } else { if (i < size) { i++ } else { j+=2 } if (j > 1) { j-- } } } for (row=0; row<size; row++) { # show array for (col=0; col<size; col++) { printf("%*d",width,arr[row,col]) } printf("\n") } exit(0) }  
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Kotlin
Kotlin
fun main() { println("First 30 values in the yellowstone sequence:") println(yellowstoneSequence(30)) }   private fun yellowstoneSequence(sequenceCount: Int): List<Int> { val yellowstoneList = mutableListOf(1, 2, 3) var num = 4 val notYellowstoneList = mutableListOf<Int>() var yellowSize = 3 while (yellowSize < sequenceCount) { var found = -1 for (index in notYellowstoneList.indices) { val test = notYellowstoneList[index] if (gcd(yellowstoneList[yellowSize - 2], test) > 1 && gcd( yellowstoneList[yellowSize - 1], test ) == 1 ) { found = index break } } if (found >= 0) { yellowstoneList.add(notYellowstoneList.removeAt(found)) yellowSize++ } else { while (true) { if (gcd(yellowstoneList[yellowSize - 2], num) > 1 && gcd( yellowstoneList[yellowSize - 1], num ) == 1 ) { yellowstoneList.add(num) yellowSize++ num++ break } notYellowstoneList.add(num) num++ } } } return yellowstoneList }   private fun gcd(a: Int, b: Int): Int { return if (b == 0) { a } else gcd(b, a % b) }
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Julia
Julia
""" Rosetta Code Yahoo search task. https://rosettacode.org/wiki/Yahoo!_search_interface """   using EzXML using HTTP using Logging   const pagesize = 7 const URI = "https://search.yahoo.com/search?fr=opensearch&pz=$pagesize&"   struct SearchResults title::String content::String url::String end   mutable struct YahooSearch search::String yahoourl::String currentpage::Int usedpages::Vector{Int} results::Vector{SearchResults} end YahooSearch(s, url = URI) = YahooSearch(s, url, 1, Int[], SearchResults[])   function NextPage(yah::YahooSearch, link, pagenum) oldpage = yah.currentpage yah.currentpage = pagenum search(yah) yah.currentpage = oldpage end   function search(yah::YahooSearch) push!(yah.usedpages, yah.currentpage) queryurl = yah.yahoourl * "b=$(yah.currentpage)&p=" * HTTP.escapeuri(yah.search) req = HTTP.request("GET", queryurl) # Yahoo's HTML is nonstandard, so send excess warnings from the parser to NullLogger html = with_logger(NullLogger()) do parsehtml(String(req.body)) end for div in findall("//li/div", html) if haskey(div, "class") if startswith(div["class"], "dd algo") && (a = findfirst("div/h3/a", div)) != nothing && haskey(a, "href") url, title, content = a["href"], nodecontent(a), "None" for span in findall("div/p/span", div) if haskey(span, "class") && occursin("fc-falcon", span["class"]) content = nodecontent(span) end end push!(yah.results, SearchResults(title, content, url)) elseif startswith(div["class"], "dd pagination") for a in findall("div/div/a", div) if haskey(a, "href") lnk, n = a["href"], tryparse(Int, nodecontent(a))  !isnothing(n) && !(n in yah.usedpages) && NextPage(yah, lnk, n) end end end end end end   ysearch = YahooSearch("RosettaCode") search(ysearch) println("Searching Yahoo for `RosettaCode`:") println( "Found ", length(ysearch.results), " entries on ", length(ysearch.usedpages), " pages.\n", ) for res in ysearch.results println("Title: ", res.title) println("Content: ", res.content) println("URL: ", res.url, "\n") end  
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Kotlin
Kotlin
// version 1.2.0   import java.net.URL   val rx = Regex("""<div class=\"yst result\">.+?<a href=\"(.*?)\" class=\"\">(.*?)</a>.+?class="abstract ellipsis">(.*?)</p>""")   class YahooResult(var title: String, var link: String, var text: String) {   override fun toString() = "\nTitle: $title\nLink : $link\nText : $text" }   class YahooSearch(val query: String, val page: Int = 0) {   private val content: String   init { val yahoo = "http://search.yahoo.com/search?" val url = URL("${yahoo}p=$query&b=${page * 10 + 1}") content = url.readText() }   val results: MutableList<YahooResult> get() { val list = mutableListOf<YahooResult>() for (mr in rx.findAll(content)) { val title = mr.groups[2]!!.value.replace("<b>", "").replace("</b>", "") val link = mr.groups[1]!!.value val text = mr.groups[3]!!.value.replace("<b>", "").replace("</b>", "") list.add (YahooResult(title, link, text)) } return list }   fun nextPage() = YahooSearch(query, page + 1)   fun getPage(newPage: Int) = YahooSearch(query, newPage) }   fun main(args: Array<String>) { for (page in 0..1) { val x = YahooSearch("rosettacode", page) println("\nPAGE ${page + 1} =>") for (result in x.results.take(3)) println(result) } }
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#zkl
zkl
Compiler.Parser.parseText("(1+3)*7").dump(); Compiler.Parser.parseText("1+3*7").dump();
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#ZX_Spectrum_Basic
ZX Spectrum Basic
10 PRINT "Use integer numbers and signs"'"+ - * / ( )"'' 20 LET s$="": REM last symbol 30 LET pc=0: REM parenthesis counter 40 LET i$="1+2*(3+(4*5+6*7*8)-9)/10" 50 PRINT "Input = ";i$ 60 FOR n=1 TO LEN i$ 70 LET c$=i$(n) 80 IF c$>="0" AND c$<="9" THEN GO SUB 170: GO TO 130 90 IF c$="+" OR c$="-" THEN GO SUB 200: GO TO 130 100 IF c$="*" OR c$="/" THEN GO SUB 200: GO TO 130 110 IF c$="(" OR c$=")" THEN GO SUB 230: GO TO 130 120 GO TO 300 130 NEXT n 140 IF pc>0 THEN PRINT FLASH 1;"Parentheses not paired.": BEEP 1,-25: STOP 150 PRINT "Result = ";VAL i$ 160 STOP 170 IF s$=")" THEN GO TO 300 180 LET s$=c$ 190 RETURN 200 IF (NOT (s$>="0" AND s$<="9")) AND s$<>")" THEN GO TO 300 210 LET s$=c$ 220 RETURN 230 IF c$="(" AND ((s$>="0" AND s$<="9") OR s$=")") THEN GO TO 300 240 IF c$=")" AND ((NOT (s$>="0" AND s$<="9")) OR s$="(") THEN GO TO 300 250 LET s$=c$ 260 IF c$="(" THEN LET pc=pc+1: RETURN 270 LET pc=pc-1 280 IF pc<0 THEN GO TO 300 290 RETURN 300 PRINT FLASH 1;"Invalid symbol ";c$;" detected in pos ";n: BEEP 1,-25 310 STOP  
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Standard_ML
Standard ML
  exception Found of string ;   val divisors = fn n => let val rec divr = fn ( c, divlist ,i) => if c <2*i then c::divlist else divr (if c mod i = 0 then (c,i::divlist,i+1) else (c,divlist,i+1) ) in divr (n,[],1) end;     val subsetSums = fn M => fn input => let val getnrs = fn (v,x) => (* out: list of numbers index where v is true + x *) let val rec runthr = fn (v,i,x,lst)=> if i>=M then (v,i,x,lst) else runthr (v,i+1,x,if Vector.sub(v,i) then (i+x)::lst else lst) ; in #4 (runthr (v,0,x,[])) end;   val nwVec = fn (v,nrs) => let val rec upd = fn (v,i,[]) => (v,i,[]) | (v,i,h::t) => upd ( case Int.compare (h,M) of LESS => ( Vector.update (v,h,true),i+1,t) | GREATER => (v,i+1,t) | EQUAL => raise Found ("done "^(Int.toString h)) ) in #1 (upd (v,0,nrs)) end;   val rec setSums = fn ([],v) => ([],v) | (x::t,v) => setSums(t, nwVec(v, getnrs (v,x))) in   #2 (setSums (input,Vector.tabulate (M+1,fn 0=> true|_=>false) ))   end;     val rec Zumkeller = fn n => let val d = divisors n; val s = List.foldr op+ 0 d ; val hs = s div 2 -n ; in   if s mod 2 = 1 orelse 0 > hs then false else Vector.sub ( subsetSums hs (tl d) ,hs) handle Found nr => true   end;  
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Swift
Swift
import Foundation   extension BinaryInteger { @inlinable public var isZumkeller: Bool { let divs = factors(sorted: false) let sum = divs.reduce(0, +)   guard sum & 1 != 1 else { return false }   guard self & 1 != 1 else { let abundance = sum - 2*self   return abundance > 0 && abundance & 1 == 0 }   return isPartSum(divs: divs[...], sum: sum / 2) }   @inlinable public func factors(sorted: Bool = true) -> [Self] { let maxN = Self(Double(self).squareRoot()) var res = Set<Self>()   for factor in stride(from: 1, through: maxN, by: 1) where self % factor == 0 { res.insert(factor) res.insert(self / factor) }   return sorted ? res.sorted() : Array(res) } }   @usableFromInline func isPartSum<T: BinaryInteger>(divs: ArraySlice<T>, sum: T) -> Bool { guard sum != 0 else { return true }   guard !divs.isEmpty else { return false }   let last = divs.last!   if last > sum { return isPartSum(divs: divs.dropLast(), sum: sum) }   return isPartSum(divs: divs.dropLast(), sum: sum) || isPartSum(divs: divs.dropLast(), sum: sum - last) }   let zums = (2...).lazy.filter({ $0.isZumkeller }) let oddZums = zums.filter({ $0 & 1 == 1 }) let oddZumsWithout5 = oddZums.filter({ String($0).last! != "5" })   print("First 220 zumkeller numbers are \(Array(zums.prefix(220)))") print("First 40 odd zumkeller numbers are \(Array(oddZums.prefix(40)))") print("First 40 odd zumkeller numbers that don't end in a 5 are: \(Array(oddZumsWithout5.prefix(40)))")
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Golfscript
Golfscript
5 4 3 2??? # Calculate 5^(4^(3^2)) `.. # Convert to string and make two copies 20<p # Print the first 20 digits -20>p # Print the last 20 digits ,p # Print the length
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Groovy
Groovy
def bigNumber = 5G ** (4 ** (3 ** 2))
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Haskell
Haskell
main :: IO () main = do let y = show (5 ^ 4 ^ 3 ^ 2) let l = length y putStrLn ("5**4**3**2 = " ++ take 20 y ++ "..." ++ drop (l - 20) y ++ " and has " ++ show l ++ " digits")
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Swift
Swift
import UIKit   // testing examples let beforeTxt = """ 1100111 1100111 1100111 1100111 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1111110 0000000 """   let smallrc01 = """ 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 """   let rc01 = """ 00000000000000000000000000000000000000000000000000000000000 01111111111111111100000000000000000001111111111111000000000 01111111111111111110000000000000001111111111111111000000000 01111111111111111111000000000000111111111111111111000000000 01111111100000111111100000000001111111111111111111000000000 00011111100000111111100000000011111110000000111111000000000 00011111100000111111100000000111111100000000000000000000000 00011111111111111111000000000111111100000000000000000000000 00011111111111111110000000000111111100000000000000000000000 00011111111111111111000000000111111100000000000000000000000 00011111100000111111100000000111111100000000000000000000000 00011111100000111111100000000111111100000000000000000000000 00011111100000111111100000000011111110000000111111000000000 01111111100000111111100000000001111111111111111111000000000 01111111100000111111101111110000111111111111111111011111100 01111111100000111111101111110000001111111111111111011111100 01111111100000111111101111110000000001111111111111011111100 00000000000000000000000000000000000000000000000000000000000 """   // Zhang-Suen thinning algorithm in Swift /// function to thin the image func zhangSuen(image: inout [[Int]]) -> [[Int]] { // array of x, y position where need to changed to be white var changing1, changing2: [(Int, Int)] repeat { // set to empty array changing1 = [] changing2 = [] // Step 1 // loop through row of image for y in 1..<image.count-1 { // loop through column of image for x in 1..<image[0].count-1 { // get neighbours of P1 var nb = neighbours(x: x, y: y, image: image) // set P2, P4, P6, P8 from neighbours let P2 = nb[0], P4 = nb[2], P6 = nb[4], P8 = nb[6] // reference: https://www.hackingwithswift.com/example-code/language/how-to-sum-an-array-of-numbers-using-reduce // reference: https://www.hackingwithswift.com/articles/90/how-to-check-whether-a-value-is-inside-a-range if (image[y][x] == 1 && // Condision 0 (2...6).contains(nb.reduce(0, +)) && // Condision 1 transitions(neighbours: &nb) == 1 && // Condision 2 P2 * P4 * P6 == 0 && // Condision 3 P4 * P6 * P8 == 0 // Condision 4 ) { // add to step1 changing1 list changing1.append((x,y)) } } } // loop through step1 changing1 list and change to white for (x, y) in changing1 { image[y][x] = 0 } // Step 2 // loop through row of image for y in 1..<image.count-1 { // loop through column of image for x in 1..<image[0].count-1 { // get neighbours of P1 var nb = neighbours(x: x, y: y, image: image) // set P2, P4, P6, P8 from neighbours let P2 = nb[0], P4 = nb[2], P6 = nb[4], P8 = nb[6] if (image[y][x] == 1 && // Condision 0 (2...6).contains(nb.reduce(0, +)) && // Condision 1 transitions(neighbours: &nb) == 1 && // Condision 2 P2 * P4 * P8 == 0 && // Condision 3 P2 * P6 * P8 == 0 // Condision 4 ) { // add to step2 changing2 list changing2.append((x,y)) } } } // loop through step2 changing2 list and change to white for (x, y) in changing2 { image[y][x] = 0 } // finish loop when there's no more place to change to white, when changing1, changing2 are empty } while !changing1.isEmpty && !changing2.isEmpty // return updated image return image }   /// function to convert multiline string of 1/0 into 2D Int array func intarray(binstring: String) -> [[Int]] { // reference: https://stackoverflow.com/questions/28611336/how-to-convert-a-string-numeric-in-a-int-array-in-swift // map through each char of input String to convert to Int return binstring.split(separator: "\n").map {$0.compactMap{$0.wholeNumberValue}} }   /// function to convert 2D Int array of 1/0 into multiline String of ‘#’ and ‘.’ func toTxt(intmatrix: [[Int]]) -> String { // map through each array of parent array and // map through element of child array and convert to '#' when 1 and to '.' when 0 return intmatrix.map {$0.map { $0 == 1 ? "#" : "."}.joined(separator: "")}.joined(separator: "\n") }   /// function to get neighbours of P1 = [P2,P3,P4,P5,P6,P7,P8,P9] func neighbours(x: Int, y: Int, image: [[Int]]) -> [Int] { let i = image // set x, y positions of P1 neighbours let x1 = x+1, y1 = y-1, x_1 = x-1, y_1 = y+1 // return neighbours of P1 return [i[y1][x], i[y1][x1], i[y][x1], i[y_1][x1], // P2,P3,P4,P5 i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1]] // P6,P7,P8,P9 }   /// function to get the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. func transitions(neighbours: inout [Int]) -> Int { // add P2 at the end of neighbours array let n = neighbours + [neighbours[0]] var result = 0 // reference: https://www.marcosantadev.com/arrayslice-in-swift/ // compare between each element of neightbour and next element of the element to check if the transition is 0 -> 1 for (n1, n2) in zip(n, n.suffix(n.count - 1)) { // if the pattern matches, increament result to 1 if (n1, n2) == (0, 1) { result += 1 } } // return number of transitions from 0 to 1 return result }   // run testing // array of test examples let testCases: [String] = [beforeTxt, smallrc01, rc01] for picture in testCases { // convert string to 2D Int array var image = intarray(binstring: picture) // print the result print("\nFrom:\n\(toTxt(intmatrix: image))") // run through Zhang-Suen thinning algorithm let after = zhangSuen(image: &image) // print the result print("\nTo thinned:\n\(toTxt(intmatrix: after))") }
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#jq
jq
def zeckendorf: def fibs($n): # input: [f(i-2), f(i-1)] [1,1] | [recurse(select(.[1] < $n) | [.[1], add]) | .[1]] ;   # Emit an array of 0s and 1s corresponding to the Zeckendorf encoding # $f should be the relevant Fibonacci numbers in increasing order. def loop($f): [ recurse(. as [$n, $ix] | select( $ix > -1 ) | $f[$ix] as $next | if $n >= $next then [$n - $next, $ix-1, 1] else [$n, $ix-1, 0] end ) | .[2] // empty ] # remove any superfluous leading 0: # remove leading 0 if any unless length==1 | if length>1 and .[0] == 0 then .[1:] else . end ;   # state: [$n, index_in_fibs, digit ] fibs(.) as $f | [., ($f|length)-1] | loop($f) | join("") ;
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Julia
Julia
function zeck(n) n <= 0 && return 0 fib = [2,1]; while fib[1] < n unshift!(fib,sum(fib[1:2])) end dig = Int[]; for f in fib f <= n ? (push!(dig,1); n = n-f;) : push!(dig,0) end return dig[1] == 0 ? dig[2:end] : dig end
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#CLU
CLU
start_up = proc () max = 100 po: stream := stream$primary_output() open: array[bool] := array[bool]$fill(1, max, false)   for pass: int in int$from_to(1, max) do for door: int in int$from_to_by(pass, max, pass) do open[door] := ~open[door] end end   for door: int in array[bool]$indexes(open) do if open[door] then stream$putl(po, "Door " || int$unparse(door) || " is open.") end end end start_up
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#FreeBASIC
FreeBASIC
' compile with: FBC -s console. ' compile with: FBC -s console -exx to have boundary checks.   Dim As Integer a(5) ' from s(0) to s(5) Dim As Integer num = 1 Dim As String s(-num To num) ' s1(-1), s1(0) and s1(1)   Static As UByte c(5) ' create a array with 6 elements (0 to 5)   'dimension array and initializing it with Data Dim d(1 To 2, 1 To 5) As Integer => {{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}} Print " The first dimension has a lower bound of"; LBound(d);_ " and a upper bound of"; UBound(d) Print " The second dimension has a lower bound of"; LBound(d,2);_ " and a upper bound of"; UBound(d,2) Print : Print   Dim Shared As UByte u(0 To 3) ' make a shared array of UByte with 4 elements   Dim As UInteger pow() ' make a variable length array ' you must Dim the array before you can use ReDim ReDim pow(num) ' pow now has 1 element pow(num) = 10 ' lets fill it with 10 and print it Print " The value of pow(num) = "; pow(num)   ReDim pow(10) ' make pow a 10 element array Print Print " Pow now has"; UBound(pow) - LBound(pow) +1; " elements" ' the value of pow(num) is gone now Print " The value of pow(num) = "; pow(num); ", should be 0"   Print For i As Integer = LBound(pow) To UBound(pow) pow(i) = i * i Print pow(i), Next Print:Print   ReDim Preserve pow(3 To 7) ' the first five elements will be preserved, not elements 3 to 7 Print Print " The lower bound is now"; LBound(pow);_ " and the upper bound is"; UBound(pow) Print " Pow now has"; UBound(pow) - LBound(pow) +1; " elements" Print For i As Integer = LBound(pow) To UBound(pow) Print pow(i), Next Print : Print   'erase the variable length array Erase pow Print " The lower bound is now"; LBound(pow);_ " and the upper bound is "; UBound(pow) Print " If the lower bound is 0 and the upper bound is -1 it means," Print " that the array has no elements, it's completely removed" Print : Print   'erase the fixed length array Print " Display the contents of the array d" For i As Integer = 1 To 2 : For j As Integer = 1 To 5 Print d(i,j);" "; Next : Next : Print : Print   Erase d Print " We have erased array d" Print " The first dimension has a lower bound of"; LBound(d);_ " and a upper bound of"; UBound(d) Print " The second dimension has a lower bound of"; LBound(d,2);_ " and a upper bound of"; UBound(d,2) Print For i As Integer = 1 To 2 : For j As Integer = 1 To 5 Print d(i,j);" "; Next : Next Print Print " The elements self are left untouched but there content is set to 0"   ' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Ruby
Ruby
  # Four ways to write complex numbers: a = Complex(1, 1) # 1. call Kernel#Complex i = Complex::I # 2. use Complex::I b = 3.14159 + 1.25 * i c = '1/2+3/4i'.to_c # 3. Use the .to_c method from String, result ((1/2)+(3/4)*i) c = 1.0/2+3/4i # (0.5-(3/4)*i)   # Operations: puts a + b # addition puts a * b # multiplication puts -a # negation puts 1.quo a # multiplicative inverse puts a.conjugate # complex conjugate puts a.conj # alias for complex conjugate
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Swift
Swift
import Foundation   extension BinaryInteger { @inlinable public func gcd(with other: Self) -> Self { var gcd = self var b = other   while b != 0 { (gcd, b) = (b, gcd % b) }   return gcd }   @inlinable public func lcm(with other: Self) -> Self { let g = gcd(with: other)   return self / g * other } }   public struct Frac<NumType: BinaryInteger & SignedNumeric>: Equatable { @usableFromInline var _num: NumType   @usableFromInline var _dom: NumType   @usableFromInline init(_num: NumType, _dom: NumType) { self._num = _num self._dom = _dom }   @inlinable public init(numerator: NumType, denominator: NumType) { let divisor = numerator.gcd(with: denominator)   self._num = numerator / divisor self._dom = denominator / divisor }   @inlinable public static func + (lhs: Frac, rhs: Frac) -> Frac { let multiplier = lhs._dom.lcm(with: rhs.denominator)   return Frac( numerator: lhs._num * multiplier / lhs._dom + rhs._num * multiplier / rhs._dom, denominator: multiplier ) }   @inlinable public static func += (lhs: inout Frac, rhs: Frac) { lhs = lhs + rhs }   @inlinable public static func - (lhs: Frac, rhs: Frac) -> Frac { return lhs + -rhs }   @inlinable public static func -= (lhs: inout Frac, rhs: Frac) { lhs = lhs + -rhs }   @inlinable public static func * (lhs: Frac, rhs: Frac) -> Frac { return Frac(numerator: lhs._num * rhs._num, denominator: lhs._dom * rhs._dom) }   @inlinable public static func *= (lhs: inout Frac, rhs: Frac) { lhs = lhs * rhs }   @inlinable public static func / (lhs: Frac, rhs: Frac) -> Frac { return lhs * Frac(_num: rhs._dom, _dom: rhs._num) }   @inlinable public static func /= (lhs: inout Frac, rhs: Frac) { lhs = lhs / rhs }   @inlinable prefix static func - (rhs: Frac) -> Frac { return Frac(_num: -rhs._num, _dom: rhs._dom) } }   extension Frac { @inlinable public var numerator: NumType { get { _num } set { let divisor = newValue.gcd(with: denominator)   _num = newValue / divisor _dom = denominator / divisor } }   @inlinable public var denominator: NumType { get { _dom } set { let divisor = newValue.gcd(with: numerator)   _num = numerator / divisor _dom = newValue / divisor } } }   extension Frac: CustomStringConvertible { public var description: String { let neg = numerator < 0 || denominator < 0   return "Frac(\(neg ? "-" : "")\(abs(numerator)) / \(abs(denominator)))" } }   extension Frac: Comparable { @inlinable public static func <(lhs: Frac, rhs: Frac) -> Bool { return lhs._num * rhs._dom < lhs._dom * rhs._num } }   extension Frac: ExpressibleByIntegerLiteral { public init(integerLiteral value: Int) { self._num = NumType(value) self._dom = 1 } }     for candidate in 2..<1<<19 { var sum = Frac(numerator: 1, denominator: candidate)   let m = Int(ceil(Double(candidate).squareRoot()))   for factor in 2..<m where candidate % factor == 0 { sum += Frac(numerator: 1, denominator: factor) sum += Frac(numerator: 1, denominator: candidate / factor) }   if sum == 1 { print("\(candidate) is perfect") } }
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#min
min
0 0 pow puts
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#MiniScript
MiniScript
print "The result of zero to the zero power is " + 0^0
http://rosettacode.org/wiki/Zebra_puzzle
Zebra puzzle
Zebra puzzle You are encouraged to solve this task according to the task description, using any language you may know. The Zebra puzzle, a.k.a. Einstein's Riddle, is a logic puzzle which is to be solved programmatically. It has several variants, one of them this:   There are five houses.   The English man lives in the red house.   The Swede has a dog.   The Dane drinks tea.   The green house is immediately to the left of the white house.   They drink coffee in the green house.   The man who smokes Pall Mall has birds.   In the yellow house they smoke Dunhill.   In the middle house they drink milk.   The Norwegian lives in the first house.   The man who smokes Blend lives in the house next to the house with cats.   In a house next to the house where they have a horse, they smoke Dunhill.   The man who smokes Blue Master drinks beer.   The German smokes Prince.   The Norwegian lives next to the blue house.   They drink water in a house next to the house where they smoke Blend. The question is, who owns the zebra? Additionally, list the solution for all the houses. Optionally, show the solution is unique. Related tasks   Dinesman's multiple-dwelling problem   Twelve statements
#C
C
#include <stdio.h> #include <string.h>   enum HouseStatus { Invalid, Underfull, Valid };   enum Attrib { C, M, D, A, S };   // Unfilled attributes are represented by -1 enum Colors { Red, Green, White, Yellow, Blue }; enum Mans { English, Swede, Dane, German, Norwegian }; enum Drinks { Tea, Coffee, Milk, Beer, Water }; enum Animals { Dog, Birds, Cats, Horse, Zebra }; enum Smokes { PallMall, Dunhill, Blend, BlueMaster, Prince };     void printHouses(int ha[5][5]) { const char *color[] = { "Red", "Green", "White", "Yellow", "Blue" }; const char *man[] = { "English", "Swede", "Dane", "German", "Norwegian" }; const char *drink[] = { "Tea", "Coffee", "Milk", "Beer", "Water" }; const char *animal[] = { "Dog", "Birds", "Cats", "Horse", "Zebra" }; const char *smoke[] = { "PallMall", "Dunhill", "Blend", "BlueMaster", "Prince" };   printf("%-10.10s%-10.10s%-10.10s%-10.10s%-10.10s%-10.10s\n", "House", "Color", "Man", "Drink", "Animal", "Smoke");   for (int i = 0; i < 5; i++) { printf("%-10d", i); if (ha[i][C] >= 0) printf("%-10.10s", color[ha[i][C]]); else printf("%-10.10s", "-"); if (ha[i][M] >= 0) printf("%-10.10s", man[ha[i][M]]); else printf("%-10.10s", "-"); if (ha[i][D] >= 0) printf("%-10.10s", drink[ha[i][D]]); else printf("%-10.10s", "-"); if (ha[i][A] >= 0) printf("%-10.10s", animal[ha[i][A]]); else printf("%-10.10s", "-"); if (ha[i][S] >= 0) printf("%-10.10s\n", smoke[ha[i][S]]); else printf("-\n"); } }     int checkHouses(int ha[5][5]) { int c_add = 0, c_or = 0; int m_add = 0, m_or = 0; int d_add = 0, d_or = 0; int a_add = 0, a_or = 0; int s_add = 0, s_or = 0;   // Cond 9: In the middle house they drink milk. if (ha[2][D] >= 0 && ha[2][D] != Milk) return Invalid;   // Cond 10: The Norwegian lives in the first house. if (ha[0][M] >= 0 && ha[0][M] != Norwegian) return Invalid;   for (int i = 0; i < 5; i++) { // Uniqueness tests. if (ha[i][C] >= 0) { c_add += (1 << ha[i][C]); c_or |= (1 << ha[i][C]); } if (ha[i][M] >= 0) { m_add += (1 << ha[i][M]); m_or |= (1 << ha[i][M]); } if (ha[i][D] >= 0) { d_add += (1 << ha[i][D]); d_or |= (1 << ha[i][D]); } if (ha[i][A] >= 0) { a_add += (1 << ha[i][A]); a_or |= (1 << ha[i][A]); } if (ha[i][S] >= 0) { s_add += (1 << ha[i][S]); s_or |= (1 << ha[i][S]); }   // Cond 2: The English man lives in the red house. if ((ha[i][M] >= 0 && ha[i][C] >= 0) && ((ha[i][M] == English && ha[i][C] != Red) || // Checking both (ha[i][M] != English && ha[i][C] == Red))) // to make things quicker. return Invalid;   // Cond 3: The Swede has a dog. if ((ha[i][M] >= 0 && ha[i][A] >= 0) && ((ha[i][M] == Swede && ha[i][A] != Dog) || (ha[i][M] != Swede && ha[i][A] == Dog))) return Invalid;   // Cond 4: The Dane drinks tea. if ((ha[i][M] >= 0 && ha[i][D] >= 0) && ((ha[i][M] == Dane && ha[i][D] != Tea) || (ha[i][M] != Dane && ha[i][D] == Tea))) return Invalid;   // Cond 5: The green house is immediately to the left of the white house. if ((i > 0 && ha[i][C] >= 0 /*&& ha[i-1][C] >= 0 */ ) && ((ha[i - 1][C] == Green && ha[i][C] != White) || (ha[i - 1][C] != Green && ha[i][C] == White))) return Invalid;   // Cond 6: drink coffee in the green house. if ((ha[i][C] >= 0 && ha[i][D] >= 0) && ((ha[i][C] == Green && ha[i][D] != Coffee) || (ha[i][C] != Green && ha[i][D] == Coffee))) return Invalid;   // Cond 7: The man who smokes Pall Mall has birds. if ((ha[i][S] >= 0 && ha[i][A] >= 0) && ((ha[i][S] == PallMall && ha[i][A] != Birds) || (ha[i][S] != PallMall && ha[i][A] == Birds))) return Invalid;   // Cond 8: In the yellow house they smoke Dunhill. if ((ha[i][S] >= 0 && ha[i][C] >= 0) && ((ha[i][S] == Dunhill && ha[i][C] != Yellow) || (ha[i][S] != Dunhill && ha[i][C] == Yellow))) return Invalid;   // Cond 11: The man who smokes Blend lives in the house next to the house with cats. if (ha[i][S] == Blend) { if (i == 0 && ha[i + 1][A] >= 0 && ha[i + 1][A] != Cats) return Invalid; else if (i == 4 && ha[i - 1][A] != Cats) return Invalid; else if (ha[i + 1][A] >= 0 && ha[i + 1][A] != Cats && ha[i - 1][A] != Cats) return Invalid; }   // Cond 12: In a house next to the house where they have a horse, they smoke Dunhill. if (ha[i][S] == Dunhill) { if (i == 0 && ha[i + 1][A] >= 0 && ha[i + 1][A] != Horse) return Invalid; else if (i == 4 && ha[i - 1][A] != Horse) return Invalid; else if (ha[i + 1][A] >= 0 && ha[i + 1][A] != Horse && ha[i - 1][A] != Horse) return Invalid; }   // Cond 13: The man who smokes Blue Master drinks beer. if ((ha[i][S] >= 0 && ha[i][D] >= 0) && ((ha[i][S] == BlueMaster && ha[i][D] != Beer) || (ha[i][S] != BlueMaster && ha[i][D] == Beer))) return Invalid;   // Cond 14: The German smokes Prince if ((ha[i][M] >= 0 && ha[i][S] >= 0) && ((ha[i][M] == German && ha[i][S] != Prince) || (ha[i][M] != German && ha[i][S] == Prince))) return Invalid;   // Cond 15: The Norwegian lives next to the blue house. if (ha[i][M] == Norwegian && ((i < 4 && ha[i + 1][C] >= 0 && ha[i + 1][C] != Blue) || (i > 0 && ha[i - 1][C] != Blue))) return Invalid;   // Cond 16: They drink water in a house next to the house where they smoke Blend. if (ha[i][S] == Blend) { if (i == 0 && ha[i + 1][D] >= 0 && ha[i + 1][D] != Water) return Invalid; else if (i == 4 && ha[i - 1][D] != Water) return Invalid; else if (ha[i + 1][D] >= 0 && ha[i + 1][D] != Water && ha[i - 1][D] != Water) return Invalid; }   }   if ((c_add != c_or) || (m_add != m_or) || (d_add != d_or) || (a_add != a_or) || (s_add != s_or)) { return Invalid; }   if ((c_add != 0b11111) || (m_add != 0b11111) || (d_add != 0b11111) || (a_add != 0b11111) || (s_add != 0b11111)) { return Underfull; }   return Valid; }     int bruteFill(int ha[5][5], int hno, int attr) { int stat = checkHouses(ha); if ((stat == Valid) || (stat == Invalid)) return stat;   int hb[5][5]; memcpy(hb, ha, sizeof(int) * 5 * 5); for (int i = 0; i < 5; i++) { hb[hno][attr] = i; stat = checkHouses(hb); if (stat != Invalid) { int nexthno, nextattr; if (attr < 4) { nextattr = attr + 1; nexthno = hno; } else { nextattr = 0; nexthno = hno + 1; }   stat = bruteFill(hb, nexthno, nextattr); if (stat != Invalid) { memcpy(ha, hb, sizeof(int) * 5 * 5); return stat; } } }   // We only come here if none of the attr values assigned were valid. return Invalid; }     int main() { int ha[5][5] = {{-1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1}};   bruteFill(ha, 0, 0); printHouses(ha);   return 0; }
http://rosettacode.org/wiki/XML/XPath
XML/XPath
Perform the following three XPath queries on the XML Document below: //item[1]: Retrieve the first "item" element //price/text(): Perform an action on each "price" element (print it out) //name: Get an array of all the "name" elements XML Document: <inventory title="OmniCorp Store #45x10^3"> <section name="health"> <item upc="123456789" stock="12"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc="445322344" stock="18"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name="food"> <item upc="485672034" stock="653"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc="132957764" stock="44"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>
#C.23
C#
XmlReader XReader;   // Either read the xml from a string ... XReader = XmlReader.Create(new StringReader("<inventory title=... </inventory>"));   // ... or read it from the file system. XReader = XmlReader.Create("xmlfile.xml");   // Create a XPathDocument object (which implements the IXPathNavigable interface) // which is optimized for XPath operation. (very fast). IXPathNavigable XDocument = new XPathDocument(XReader);   // Create a Navigator to navigate through the document. XPathNavigator Nav = XDocument.CreateNavigator(); Nav = Nav.SelectSingleNode("//item");   // Move to the first element of the selection. (if available). if(Nav.MoveToFirst()) { Console.WriteLine(Nav.OuterXml); // The outer xml of the first item element. }   // Get an iterator to loop over multiple selected nodes. XPathNodeIterator Iterator = XDocument.CreateNavigator().Select("//price");   while (Iterator.MoveNext()) { Console.WriteLine(Iterator.Current.Value); }   Iterator = XDocument.CreateNavigator().Select("//name");   // Use a generic list. List<string> NodesValues = new List<string>();   while (Iterator.MoveNext()) { NodesValues.Add(Iterator.Current.Value); }   // Convert the generic list to an array and output the count of items. Console.WriteLine(NodesValues.ToArray().Length);
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#AWK
AWK
  # syntax: GAWK -f YIN_AND_YANG.AWK # converted from PHL BEGIN { yin_and_yang(16) yin_and_yang(8) exit(0) } function yin_and_yang(radius, black,white,scale_x,scale_y,sx,sy,x,y) { black = "#" white = "." scale_x = 2 scale_y = 1 for (sy = radius*scale_y; sy >= -(radius*scale_y); sy--) { for (sx = -(radius*scale_x); sx <= radius*scale_x; sx++) { x = sx / scale_x y = sy / scale_y if (in_big_circle(radius,x,y)) { if (in_white_semi_circle(radius,x,y)) { printf("%s",(in_small_black_circle(radius,x,y)) ? black : white) } else if (in_black_semi_circle(radius,x,y)) { printf("%s",(in_small_white_circle(radius,x,y)) ? white : black) } else { printf("%s",(x<0) ? white : black) } } else { printf(" ") } } printf("\n") } } function in_circle(center_x,center_y,radius,x,y) { return (x-center_x)*(x-center_x)+(y-center_y)*(y-center_y) <= radius*radius } function in_big_circle(radius,x,y) { return in_circle(0,0,radius,x,y) } function in_black_semi_circle(radius,x,y) { return in_circle(0,0-radius/2,radius/2,x,y) } function in_white_semi_circle(radius,x,y) { return in_circle(0,radius/2,radius/2,x,y) } function in_small_black_circle(radius,x,y) { return in_circle(0,radius/2,radius/6,x,y) } function in_small_white_circle(radius,x,y) { return in_circle(0,0-radius/2,radius/6,x,y) }  
http://rosettacode.org/wiki/Y_combinator
Y combinator
In strict functional programming and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The   Y combinator   is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators. Task Define the stateless   Y combinator   and use it to compute factorials and Fibonacci numbers from other stateless functions or lambda expressions. Cf Jim Weirich: Adventures in Functional Programming
#C
C
#include <stdio.h> #include <stdlib.h>   /* func: our one and only data type; it holds either a pointer to a function call, or an integer. Also carry a func pointer to a potential parameter, to simulate closure */ typedef struct func_t *func; typedef struct func_t { func (*fn) (func, func); func _; int num; } func_t;   func new(func(*f)(func, func), func _) { func x = malloc(sizeof(func_t)); x->fn = f; x->_ = _; /* closure, sort of */ x->num = 0; return x; }   func call(func f, func n) { return f->fn(f, n); }   func Y(func(*f)(func, func)) { func g = new(f, 0); g->_ = g; return g; }   func num(int n) { func x = new(0, 0); x->num = n; return x; }     func fac(func self, func n) { int nn = n->num; return nn > 1 ? num(nn * call(self->_, num(nn - 1))->num) : num(1); }   func fib(func self, func n) { int nn = n->num; return nn > 1 ? num( call(self->_, num(nn - 1))->num + call(self->_, num(nn - 2))->num ) : num(1); }   void show(func n) { printf(" %d", n->num); }   int main() { int i; func f = Y(fac); printf("fac: "); for (i = 1; i < 10; i++) show( call(f, num(i)) ); printf("\n");   f = Y(fib); printf("fib: "); for (i = 1; i < 10; i++) show( call(f, num(i)) ); printf("\n");   return 0; }  
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#BBC_BASIC
BBC BASIC
Size% = 5 DIM array%(Size%-1,Size%-1)   i% = 1 j% = 1 FOR e% = 0 TO Size%^2-1 array%(i%-1,j%-1) = e% IF ((i% + j%) AND 1) = 0 THEN IF j% < Size% j% += 1 ELSE i% += 2 IF i% > 1 i% -= 1 ELSE IF i% < Size% i% += 1 ELSE j% += 2 IF j% > 1 j% -= 1 ENDIF NEXT   @% = &904 FOR row% = 0 TO Size%-1 FOR col% = 0 TO Size%-1 PRINT array%(row%,col%); NEXT PRINT NEXT row%
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Lua
Lua
function gcd(a, b) if b == 0 then return a end return gcd(b, a % b) end   function printArray(a) io.write('[') for i,v in pairs(a) do if i > 1 then io.write(', ') end io.write(v) end io.write(']') return nil end   function removeAt(a, i) local na = {} for j,v in pairs(a) do if j ~= i then table.insert(na, v) end end return na end   function yellowstone(sequenceCount) local yellow = {1, 2, 3} local num = 4 local notYellow = {} local yellowSize = 3 while yellowSize < sequenceCount do local found = -1 for i,test in pairs(notYellow) do if gcd(yellow[yellowSize - 1], test) > 1 and gcd(yellow[yellowSize - 0], test) == 1 then found = i break end end if found >= 0 then table.insert(yellow, notYellow[found]) notYellow = removeAt(notYellow, found) yellowSize = yellowSize + 1 else while true do if gcd(yellow[yellowSize - 1], num) > 1 and gcd(yellow[yellowSize - 0], num) == 1 then table.insert(yellow, num) yellowSize = yellowSize + 1 num = num + 1 break end table.insert(notYellow, num) num = num + 1 end end end return yellow end   function main() print("First 30 values in the yellowstone sequence:") printArray(yellowstone(30)) print() end   main()
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
Manipulate[ Column[Flatten[ StringCases[ StringCases[ URLFetch[ "http://search.yahoo.com/search?p=" <> query <> "&b=" <> ToString@page], "<ol" ~~ ___ ~~ "</ol>"], "<a" ~~ Shortest[__] ~~ "class=\"yschttl spt\" href=\"" ~~ Shortest[url__] ~~ "\"" ~~ Shortest[__] ~~ ">" ~~ Shortest[title__] ~~ "<div class=\"abstr\">" | "<div class=\"sm-abs\">" ~~ Shortest[abstr__] ~~ "</div>" :> Column[{Hyperlink[Style[#[[1]], Larger], #[[2]]], #[[3]], Style[#[[2]], Smaller]} &@ StringReplace[{title, url, abstr}, {"<" ~~ Shortest[__] ~~ ">" -> "", "&#" ~~ n : DigitCharacter ... ~~ ";" :> FromCharacterCode[FromDigits@n], "&amp;" -> "&", "&quot;" -> "\"", "&lt;" -> "<", "&gt;" -> ">"}]]], 1], Spacings -> 2], {{input, "", "Yahoo!"}, InputField[Dynamic@input, String] &}, {{query, ""}, ControlType -> None}, {{page, 1}, ControlType -> None}, Row[{Button["Search", page = 1; query = input], Button["Prev", page -= 10, Enabled -> Dynamic[page >= 10]], Button["Next", page += 10]}]]
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Nim
Nim
import httpclient, strutils, htmlparser, xmltree, strtabs const PageSize = 7 YahooURLPattern = "https://search.yahoo.com/search?fr=opensearch&b=$$#&pz=$#&p=".format(PageSize) type SearchResult = ref object url, title, content: string SearchInterface = ref object client: HttpClient urlPattern: string page: int results: array[PageSize+2, SearchResult] proc newSearchInterface(question: string): SearchInterface = new result result.client = newHttpClient() # result.client = newHttpClient(proxy = newProxy( # "http://localhost:40001")) # only http_proxy supported result.urlPattern = YahooURLPattern&question proc search(si: SearchInterface) = let html = parseHtml(si.client.getContent(si.urlPattern.format( si.page*PageSize+1))) var i: int attrs: XmlAttributes for d in html.findAll("div"): attrs = d.attrs if attrs != nil and attrs.getOrDefault("class").startsWith("dd algo algo-sr relsrch"): let d_inner = d.child("div") for a in d_inner.findAll("a"): attrs = a.attrs if attrs != nil and attrs.getOrDefault("class") == " ac-algo fz-l ac-21th lh-24": si.results[i] = SearchResult(url: attrs["href"], title: a.innerText, content: d.findAll("p")[0].innerText) i+=1 break while i < len(si.results) and si.results[i] != nil: si.results[i] = nil i+=1 proc nextPage(si: SearchInterface) = si.page+=1 si.search()   proc echoResult(si: SearchInterface) = for res in si.results: if res == nil: break echo(res[])   var searchInf = newSearchInterface("weather") searchInf.search() searchInf.echoResult() echo("searching for next page...") searchInf.nextPage() searchInf.echoResult()  
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Visual_Basic_.NET
Visual Basic .NET
Module Module1 Function GetDivisors(n As Integer) As List(Of Integer) Dim divs As New List(Of Integer) From { 1, n } Dim i = 2 While i * i <= n If n Mod i = 0 Then Dim j = n \ i divs.Add(i) If i <> j Then divs.Add(j) End If End If i += 1 End While Return divs End Function   Function IsPartSum(divs As List(Of Integer), sum As Integer) As Boolean If sum = 0 Then Return True End If Dim le = divs.Count If le = 0 Then Return False End If Dim last = divs(le - 1) Dim newDivs As New List(Of Integer) For i = 1 To le - 1 newDivs.Add(divs(i - 1)) Next If last > sum Then Return IsPartSum(newDivs, sum) End If Return IsPartSum(newDivs, sum) OrElse IsPartSum(newDivs, sum - last) End Function   Function IsZumkeller(n As Integer) As Boolean Dim divs = GetDivisors(n) Dim sum = divs.Sum() REM if sum is odd can't be split into two partitions with equal sums If sum Mod 2 = 1 Then Return False End If REM if n is odd use 'abundant odd number' optimization If n Mod 2 = 1 Then Dim abundance = sum - 2 * n Return abundance > 0 AndAlso abundance Mod 2 = 0 End If REM if n and sum are both even check if there's a partition which totals sum / 2 Return IsPartSum(divs, sum \ 2) End Function   Sub Main() Console.WriteLine("The first 220 Zumkeller numbers are:") Dim i = 2 Dim count = 0 While count < 220 If IsZumkeller(i) Then Console.Write("{0,3} ", i) count += 1 If count Mod 20 = 0 Then Console.WriteLine() End If End If i += 1 End While Console.WriteLine()   Console.WriteLine("The first 40 odd Zumkeller numbers are:") i = 3 count = 0 While count < 40 If IsZumkeller(i) Then Console.Write("{0,5} ", i) count += 1 If count Mod 10 = 0 Then Console.WriteLine() End If End If i += 2 End While Console.WriteLine()   Console.WriteLine("The first 40 odd Zumkeller numbers which don't end in 5 are:") i = 3 count = 0 While count < 40 If i Mod 10 <> 5 AndAlso IsZumkeller(i) Then Console.Write("{0,7} ", i) count += 1 If count Mod 8 = 0 Then Console.WriteLine() End If End If i += 2 End While End Sub End Module
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Hoon
Hoon
  =+ big=(pow 5 (pow 4 (pow 3 2))) =+ digits=(lent (skip <big> |=(a/* ?:(=(a '.') & |)))) [digits (div big (pow 10 (sub digits 20))) (mod big (pow 10 20))]  
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Icon_and_Unicon
Icon and Unicon
procedure main() x := 5^4^3^2 write("done with computation") x := string(x) write("5 ^ 4 ^ 3 ^ 2 has ",*x," digits") write("The first twenty digits are ",x[1+:20]) write("The last twenty digits are ",x[0-:20]) end
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Tcl
Tcl
# -*- coding: utf-8 -*-   set data { 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 } proc zhang-suen data { set data [string trim $data] while 1 { set n 0 incr n [step 1 data] incr n [step 2 data] if !$n break } return $data } proc step {number _data} { upvar 1 $_data data set xmax [string length [lindex $data 0]] set ymax [llength $data] switch -- $number { 1 {set cond {(!$P2 || !$P4 || !$P6) && (!$P4 || !$P6 || !$P8)}} 2 {set cond {(!$P2 || !$P4 || !$P8) && (!$P2 || !$P6 || !$P8)}} } set hits {} for {set x 1} {$x < $xmax-1} {incr x} { for {set y 1} {$y < $ymax-1} {incr y} { if {[getpix $data $x $y] == 1} { set b [B $data $x $y] if {2 <= $b && $b <= 6} { if {[A $data $x $y] == 1} { set P2 [getpix $data $x [expr $y-1]] set P4 [getpix $data [expr $x+1] $y] set P6 [getpix $data $x [expr $y+1]] set P8 [getpix $data [expr $x-1] $y] if $cond {lappend hits $x $y} } } } } } foreach {x y} $hits {set data [setpix $data $x $y 0]} return [llength $hits] } proc A {data x y} { set res 0 set last [getpix $data $x [expr $y-1]] foreach {dx dy} {1 -1 1 0 1 1 0 1 -1 1 -1 0 -1 -1 0 -1} { set this [getpix $data [expr $x+$dx] [expr $y+$dy]] if {$this > $last} {incr res} set last $this } return $res } proc B {data x y} { set res 0 foreach {dx dy} {1 -1 1 0 1 1 0 1 -1 1 -1 0 -1 -1 0 -1} { incr res [getpix $data [expr $x+$dx] [expr $y+$dy]] } return $res } proc getpix {data x y} { string index [lindex $data $y] $x } proc setpix {data x y val} { set row [lindex $data $y] lset data $y [string replace $row $x $x $val] return $data } puts [string map {1 @ 0 .} [join [zhang-suen $data] \n]]
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Klingphix
Klingphix
include ..\Utilitys.tlhy   :listos  %i$ "" !i$ len [ get tostr $i$ chain !i$ ] for drop $i$ ;     :Zeckendorf %n !n  %i 0 !i %c 0 !c   [ $i 8 itob listos "11" find not ( [ ( $c ":" 9 tochar ) lprint tonum ? $c 1 + !c ] [drop] ) if $i 1 + !i ] [$c $n >] until ;     20 Zeckendorf   nl "End " input
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Kotlin
Kotlin
// version 1.0.6   const val LIMIT = 46 // to stay within range of signed 32 bit integer val fibs = fibonacci(LIMIT)   fun fibonacci(n: Int): IntArray { if (n !in 2..LIMIT) throw IllegalArgumentException("n must be between 2 and $LIMIT") val fibs = IntArray(n) fibs[0] = 1 fibs[1] = 1 for (i in 2 until n) fibs[i] = fibs[i - 1] + fibs[i - 2] return fibs }   fun zeckendorf(n: Int): String { if (n < 0) throw IllegalArgumentException("n must be non-negative") if (n < 2) return n.toString() var lastFibIndex = 1 for (i in 2..LIMIT) if (fibs[i] > n) { lastFibIndex = i - 1 break } var nn = n - fibs[lastFibIndex--] val zr = StringBuilder("1") for (i in lastFibIndex downTo 1) if (fibs[i] <= nn) { zr.append('1') nn -= fibs[i] } else { zr.append('0') } return zr.toString() }   fun main(args: Array<String>) { println(" n z") for (i in 0..20) println("${"%2d".format(i)} : ${zeckendorf(i)}") }
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#COBOL
COBOL
IDENTIFICATION DIVISION. PROGRAM-ID. 100Doors.   DATA DIVISION. WORKING-STORAGE SECTION. 01 Current-n PIC 9(3). 01 StepSize PIC 9(3). 01 DoorTable. 02 Doors PIC 9(1) OCCURS 100 TIMES. 88 ClosedDoor VALUE ZERO. 01 Idx PIC 9(3).   PROCEDURE DIVISION. Begin. INITIALIZE DoorTable PERFORM VARYING StepSize FROM 1 BY 1 UNTIL StepSize > 100 PERFORM VARYING Current-n FROM StepSize BY StepSize UNTIL Current-n > 100 SUBTRACT Doors (Current-n) FROM 1 GIVING Doors (Current-n) END-PERFORM END-PERFORM   PERFORM VARYING Idx FROM 1 BY 1 UNTIL Idx > 100 IF ClosedDoor (Idx) DISPLAY Idx " is closed." ELSE DISPLAY Idx " is open." END-IF END-PERFORM   STOP RUN .
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Frink
Frink
  a = new array a@0 = 10 a@1 = 20 println[a@1]   b = [1, 2, 3]  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Rust
Rust
extern crate num; use num::complex::Complex;   fn main() { // two valid forms of definition let a = Complex {re:-4.0, im: 5.0}; let b = Complex::new(1.0, 1.0);   println!(" a = {}", a); println!(" b = {}", b); println!(" a + b = {}", a + b); println!(" a * b = {}", a * b); println!(" 1 / a = {}", a.inv()); println!(" -a = {}", -a); println!("conj(a) = {}", a.conj()); }
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Scala
Scala
package org.rosettacode   package object ArithmeticComplex { val i = Complex(0, 1)   implicit def fromDouble(d: Double) = Complex(d) implicit def fromInt(i: Int) = Complex(i.toDouble) }   package ArithmeticComplex { case class Complex(real: Double = 0.0, imag: Double = 0.0) { def this(s: String) = this("[\\d.]+(?!i)".r findFirstIn s getOrElse "0" toDouble, "[\\d.]+(?=i)".r findFirstIn s getOrElse "0" toDouble)   def +(b: Complex) = Complex(real + b.real, imag + b.imag) def -(b: Complex) = Complex(real - b.real, imag - b.imag) def *(b: Complex) = Complex(real * b.real - imag * b.imag, real * b.imag + imag * b.real) def inverse = { val denom = real * real + imag * imag Complex(real / denom, -imag / denom) } def /(b: Complex) = this * b.inverse def unary_- = Complex(-real, -imag) lazy val abs = math.hypot(real, imag) override def toString = real + " + " + imag + "i"   def i = { require(imag == 0.0); Complex(imag = real) } }   object Complex { def apply(s: String) = new Complex(s) def fromPolar(rho:Double, theta:Double) = Complex(rho*math.cos(theta), rho*math.sin(theta)) } }
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Tcl
Tcl
namespace eval rat {}   proc rat::new {args} { if {[llength $args] == 0} { set args {0} } lassign [split {*}$args] n d if {$d == 0} { error "divide by zero" } if {$d < 0} { set n [expr {-1 * $n}] set d [expr {abs($d)}] } return [normalize $n $d] }   proc rat::split {args} { if {[llength $args] == 1} { lassign [::split $args /] n d if {$d eq ""} { set d 1 } } else { lassign $args n d } return [list $n $d] }   proc rat::join {rat} { lassign $rat n d if {$n == 0} { return 0 } elseif {$d == 1} { return $n } else { return $n/$d } }   proc rat::normalize {n d} { set gcd [gcd $n $d] return [join [list [expr {$n/$gcd}] [expr {$d/$gcd}]]] }   proc rat::gcd {a b} { while {$b != 0} { lassign [list $b [expr {$a % $b}]] a b } return $a }   proc rat::abs {rat} { lassign [split $rat] n d return [join [list [expr {abs($n)}] $d]] }   proc rat::inv {rat} { lassign [split $rat] n d return [normalize $d $n] }   proc rat::+ {args} { set n 0 set d 1 foreach arg $args { lassign [split $arg] an ad set n [expr {$n*$ad + $an*$d}] set d [expr {$d * $ad}] } return [normalize $n $d] }   proc rat::- {args} { lassign [split [lindex $args 0]] n d if {[llength $args] == 1} { return [join [list [expr {-1 * $n}] $d]] } foreach arg [lrange $args 1 end] { lassign [split $arg] an ad set n [expr {$n*$ad - $an*$d}] set d [expr {$d * $ad}] } return [normalize $n $d] }   proc rat::* {args} { set n 1 set d 1 foreach arg $args { lassign [split $arg] an ad set n [expr {$n * $an}] set d [expr {$d * $ad}] } return [normalize $n $d] }   proc rat::/ {a b} { set r [* $a [inv $b]] if {[string match */0 $r]} { error "divide by zero" } return $r }   proc rat::== {a b} { return [expr {[- $a $b] == 0}] }   proc rat::!= {a b} { return [expr { ! [== $a $b]}] }   proc rat::< {a b} { lassign [split [- $a $b]] n d return [expr {$n < 0}] }   proc rat::> {a b} { lassign [split [- $a $b]] n d return [expr {$n > 0}] }   proc rat::<= {a b} { return [expr { ! [> $a $b]}] }   proc rat::>= {a b} { return [expr { ! [< $a $b]}] }   ################################################ proc is_perfect {num} { set sum [rat::new 0] foreach factor [all_factors $num] { set sum [rat::+ $sum [rat::new 1/$factor]] } # note, all_factors includes 1, so sum should be 2 return [rat::== $sum 2] }   proc get_perfect_numbers {} { set t [clock seconds] set limit [expr 2**19] for {set num 2} {$num < $limit} {incr num} { if {[is_perfect $num]} { puts "perfect: $num" } } puts "elapsed: [expr {[clock seconds] - $t}] seconds"   set num [expr {2**12 * (2**13 - 1)}] ;# 5th perfect number if {[is_perfect $num]} { puts "perfect: $num" } }   source primes.tcl get_perfect_numbers
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#.D0.9C.D0.9A-61.2F52
МК-61/52
Сx ^ x^y С/П
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Nanoquery
Nanoquery
println 0^0
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Neko
Neko
/** Zero to the zeroth power, in Neko */   var math_pow = $loader.loadprim("std@math_pow", 2)   $print(math_pow(0, 0), "\n")
http://rosettacode.org/wiki/Zebra_puzzle
Zebra puzzle
Zebra puzzle You are encouraged to solve this task according to the task description, using any language you may know. The Zebra puzzle, a.k.a. Einstein's Riddle, is a logic puzzle which is to be solved programmatically. It has several variants, one of them this:   There are five houses.   The English man lives in the red house.   The Swede has a dog.   The Dane drinks tea.   The green house is immediately to the left of the white house.   They drink coffee in the green house.   The man who smokes Pall Mall has birds.   In the yellow house they smoke Dunhill.   In the middle house they drink milk.   The Norwegian lives in the first house.   The man who smokes Blend lives in the house next to the house with cats.   In a house next to the house where they have a horse, they smoke Dunhill.   The man who smokes Blue Master drinks beer.   The German smokes Prince.   The Norwegian lives next to the blue house.   They drink water in a house next to the house where they smoke Blend. The question is, who owns the zebra? Additionally, list the solution for all the houses. Optionally, show the solution is unique. Related tasks   Dinesman's multiple-dwelling problem   Twelve statements
#C.23
C#
using System; using System.Collections.Generic; using System.Linq; using System.Text; using static System.Console;   public enum Colour { Red, Green, White, Yellow, Blue } public enum Nationality { Englishman, Swede, Dane, Norwegian,German } public enum Pet { Dog, Birds, Cats, Horse, Zebra } public enum Drink { Coffee, Tea, Milk, Beer, Water } public enum Smoke { PallMall, Dunhill, Blend, BlueMaster, Prince}   public static class ZebraPuzzle { private static (Colour[] colours, Drink[] drinks, Smoke[] smokes, Pet[] pets, Nationality[] nations) _solved;   static ZebraPuzzle() { var solve = from colours in Permute<Colour>() //r1 5 range where (colours,Colour.White).IsRightOf(colours, Colour.Green) // r5 from nations in Permute<Nationality>() where nations[0] == Nationality.Norwegian // r10 where (nations, Nationality.Englishman).IsSameIndex(colours, Colour.Red) //r2 where (nations,Nationality.Norwegian).IsNextTo(colours,Colour.Blue) // r15 from drinks in Permute<Drink>() where drinks[2] == Drink.Milk //r9 where (drinks, Drink.Coffee).IsSameIndex(colours, Colour.Green) // r6 where (drinks, Drink.Tea).IsSameIndex(nations, Nationality.Dane) //r4 from pets in Permute<Pet>() where (pets, Pet.Dog).IsSameIndex(nations, Nationality.Swede) // r3 from smokes in Permute<Smoke>() where (smokes, Smoke.PallMall).IsSameIndex(pets, Pet.Birds) // r7 where (smokes, Smoke.Dunhill).IsSameIndex(colours, Colour.Yellow) // r8 where (smokes, Smoke.Blend).IsNextTo(pets, Pet.Cats) // r11 where (smokes, Smoke.Dunhill).IsNextTo(pets, Pet.Horse) //r12 where (smokes, Smoke.BlueMaster).IsSameIndex(drinks, Drink.Beer) //r13 where (smokes, Smoke.Prince).IsSameIndex(nations, Nationality.German) // r14 where (drinks,Drink.Water).IsNextTo(smokes,Smoke.Blend) // r16 select (colours, drinks, smokes, pets, nations);   _solved = solve.First(); }   private static int IndexOf<T>(this T[] arr, T obj) => Array.IndexOf(arr, obj);   private static bool IsRightOf<T, U>(this (T[] a, T v) right, U[] a, U v) => right.a.IndexOf(right.v) == a.IndexOf(v) + 1;   private static bool IsSameIndex<T, U>(this (T[] a, T v)x, U[] a, U v) => x.a.IndexOf(x.v) == a.IndexOf(v);   private static bool IsNextTo<T, U>(this (T[] a, T v)x, U[] a, U v) => (x.a,x.v).IsRightOf(a, v) || (a,v).IsRightOf(x.a,x.v);   // made more generic from https://codereview.stackexchange.com/questions/91808/permutations-in-c public static IEnumerable<IEnumerable<T>> Permutations<T>(this IEnumerable<T> values) { if (values.Count() == 1) return values.ToSingleton();   return values.SelectMany(v => Permutations(values.Except(v.ToSingleton())),(v, p) => p.Prepend(v)); }   public static IEnumerable<T[]> Permute<T>() => ToEnumerable<T>().Permutations().Select(p=>p.ToArray());   private static IEnumerable<T> ToSingleton<T>(this T item){ yield return item; }   private static IEnumerable<T> ToEnumerable<T>() => Enum.GetValues(typeof(T)).Cast<T>();   public static new String ToString() { var sb = new StringBuilder(); sb.AppendLine("House Colour Drink Nationality Smokes Pet"); sb.AppendLine("───── ────── ──────── ─────────── ────────── ─────"); var (colours, drinks, smokes, pets, nations) = _solved; for (var i = 0; i < 5; i++) sb.AppendLine($"{i+1,5} {colours[i],-6} {drinks[i],-8} {nations[i],-11} {smokes[i],-10} {pets[i],-10}"); return sb.ToString(); }   public static void Main(string[] arguments) { var owner = _solved.nations[_solved.pets.IndexOf(Pet.Zebra)]; WriteLine($"The zebra owner is {owner}"); Write(ToString()); Read(); } }
http://rosettacode.org/wiki/XML/XPath
XML/XPath
Perform the following three XPath queries on the XML Document below: //item[1]: Retrieve the first "item" element //price/text(): Perform an action on each "price" element (print it out) //name: Get an array of all the "name" elements XML Document: <inventory title="OmniCorp Store #45x10^3"> <section name="health"> <item upc="123456789" stock="12"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc="445322344" stock="18"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name="food"> <item upc="485672034" stock="653"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc="132957764" stock="44"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>
#C.2B.2B
C++
#include <cassert> #include <cstdlib> #include <iostream> #include <stdexcept> #include <utility> #include <vector>   #include <libxml/parser.h> #include <libxml/tree.h> #include <libxml/xmlerror.h> #include <libxml/xmlstring.h> #include <libxml/xmlversion.h> #include <libxml/xpath.h>   #ifndef LIBXML_XPATH_ENABLED # error libxml was not configured with XPath support #endif   // Because libxml2 is a C library, we need a couple things to make it work // well with modern C++: // 1) a ScopeGuard-like type to handle cleanup functions; and // 2) an exception type that transforms the library's errors.   // ScopeGuard-like type to handle C library cleanup functions. template <typename F> class [[nodiscard]] scope_exit { public: // C++20: Constructor can (and should) be [[nodiscard]]. /*[[nodiscard]]*/ constexpr explicit scope_exit(F&& f) : f_{std::move(f)} {}   ~scope_exit() { f_(); }   // Non-copyable, non-movable. scope_exit(scope_exit const&) = delete; scope_exit(scope_exit&&) = delete; auto operator=(scope_exit const&) -> scope_exit& = delete; auto operator=(scope_exit&&) -> scope_exit& = delete;   private: F f_; };   // Exception that gets last libxml2 error. class libxml_error : public std::runtime_error { public: libxml_error() : libxml_error(std::string{}) {}   explicit libxml_error(std::string message) : std::runtime_error{make_message_(std::move(message))} {}   private: static auto make_message_(std::string message) -> std::string { if (auto const last_error = ::xmlGetLastError(); last_error) { if (not message.empty()) message += ": "; message += last_error->message; }   return message; } };   auto main() -> int { try { // Initialize libxml. ::xmlInitParser(); LIBXML_TEST_VERSION auto const libxml_cleanup = scope_exit{[] { ::xmlCleanupParser(); }};   // Load and parse XML document. auto const doc = ::xmlParseFile("test.xml"); if (not doc) throw libxml_error{"failed to load document"}; auto const doc_cleanup = scope_exit{[doc] { ::xmlFreeDoc(doc); }};   // Create XPath context for document. auto const xpath_context = ::xmlXPathNewContext(doc); if (not xpath_context) throw libxml_error{"failed to create XPath context"}; auto const xpath_context_cleanup = scope_exit{[xpath_context] { ::xmlXPathFreeContext(xpath_context); }};   // Task 1 ============================================================ { std::cout << "Task 1:\n";   auto const xpath = reinterpret_cast<::xmlChar const*>(u8"//item[1]");   // Create XPath object (same for every task). auto xpath_obj = ::xmlXPathEvalExpression(xpath, xpath_context); if (not xpath_obj) throw libxml_error{"failed to evaluate XPath"}; auto const xpath_obj_cleanup = scope_exit{[xpath_obj] { ::xmlXPathFreeObject(xpath_obj); }};   // 'result' a xmlNode* to the desired node, or nullptr if it // doesn't exist. If not nullptr, the node is owned by 'doc'. auto const result = xmlXPathNodeSetItem(xpath_obj->nodesetval, 0); if (result) std::cout << '\t' << "node found" << '\n'; else std::cout << '\t' << "node not found" << '\n'; }   // Task 2 ============================================================ { std::cout << "Task 2:\n";   auto const xpath = reinterpret_cast<::xmlChar const*>(u8"//price/text()");   // Create XPath object (same for every task). auto xpath_obj = ::xmlXPathEvalExpression(xpath, xpath_context); if (not xpath_obj) throw libxml_error{"failed to evaluate XPath"}; auto const xpath_obj_cleanup = scope_exit{[xpath_obj] { ::xmlXPathFreeObject(xpath_obj); }};   // Printing the results. auto const count = xmlXPathNodeSetGetLength(xpath_obj->nodesetval); for (auto i = decltype(count){0}; i < count; ++i) { auto const node = xmlXPathNodeSetItem(xpath_obj->nodesetval, i); assert(node);   auto const content = XML_GET_CONTENT(node); assert(content);   // Note that reinterpret_cast here is a Bad Idea, because // 'content' is UTF-8 encoded, which may or may not be the // encoding cout expects. A *PROPER* solution would translate // content to the correct encoding (or at least verify that // UTF-8 *is* the correct encoding). // // But this "works" well enough for illustration. std::cout << "\n\t" << reinterpret_cast<char const*>(content); }   std::cout << '\n'; }   // Task 3 ============================================================ { std::cout << "Task 3:\n";   auto const xpath = reinterpret_cast<::xmlChar const*>(u8"//name");   // Create XPath object (same for every task). auto xpath_obj = ::xmlXPathEvalExpression(xpath, xpath_context); if (not xpath_obj) throw libxml_error{"failed to evaluate XPath"}; auto const xpath_obj_cleanup = scope_exit{[xpath_obj] { ::xmlXPathFreeObject(xpath_obj); }};   // 'results' is a vector of pointers to the result nodes. The // nodes pointed to are owned by 'doc'. auto const results = [ns=xpath_obj->nodesetval]() { auto v = std::vector<::xmlNode*>{}; if (ns && ns->nodeTab) v.assign(ns->nodeTab, ns->nodeTab + ns->nodeNr); return v; }(); std::cout << '\t' << "set of " << results.size() << " node(s) found" << '\n'; } } catch (std::exception const& x) { std::cerr << "ERROR: " << x.what() << '\n'; return EXIT_FAILURE; } }  
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#BASIC
BASIC
pi=3.141592 s=.5   xp=320:yp=100:size=150 GOSUB DrawYY   xp=500:yp=40:size=50 GOSUB DrawYY   END   DrawYY: CIRCLE (xp,yp),size,,,,s CIRCLE (xp,yp+size/4),size/8,,,,s CIRCLE (xp,yp-size/4),size/8,,,,s CIRCLE (xp,yp+size/4),size/2,,.5*pi,1.5*pi,s CIRCLE (xp,yp-size/4),size/2,,1.5*pi,2*pi,s CIRCLE (xp,yp-size/4),size/2,,0,.5*pi,s PAINT (xp,yp-size/4) PSET (xp,yp) PAINT (xp+size/4,yp) RETURN
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#BCPL
BCPL
get "libhdr"   let circle(x, y, c, r) = (r*r) >= (x/2) * (x/2) + (y-c) * (y-c)   let pixel(x, y, r) = circle(x, y, -r/2, r/6) -> '#', circle(x, y, r/2, r/6) -> '.', circle(x, y, -r/2, r/2) -> '.', circle(x, y, r/2, r/2) -> '#', circle(x, y, 0, r) -> x<0 -> '.', '#', ' '   let yinyang(r) be for y = -r to r $( for x = -2*r to 2*r do wrch(pixel(x,y,r)) wrch('*N') $)   let start() be $( yinyang(4) yinyang(8) $)