task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #EchoLisp | EchoLisp |
(define -∏*2 (complex 0 (* -2 PI)))
(define (fft xs N)
(if (<= N 1) xs
(let* [
(N/2 (/ N 2))
(even (fft (for/vector ([i (in-range 0 N 2)]) [xs i]) N/2))
(odd (fft (for/vector ([i (in-range 1 N 2)]) [xs i]) N/2))
]
(for ((k N/2)) (vector*= odd k (exp (/ (* -∏*2 k) N ))))
(vector-append (vector-map + even odd) (vector-map - even odd)))))
(define data #( 1 1 1 1 0 0 0 0 ))
(fft data 8)
→ #( 4+0i 1-2.414213562373095i 0+0i 1-0.4142135623730949i
0+0i 1+0.4142135623730949i 0+0i 1+2.414213562373095i)
|
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Common_Lisp | Common Lisp | (defun mersenne-fac (p &aux (m (1- (expt 2 p))))
(loop for k from 1
for n = (1+ (* 2 k p))
until (zerop (mod m n))
finally (return n)))
(print (mersenne-fac 929)) |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Crystal | Crystal | require "big"
def prime?(n) # P3 Prime Generator primality test
return n | 1 == 3 if n < 5 # n: 0,1,4|false, 2,3|true
return false if n.gcd(6) != 1 # for n a P3 prime candidate (pc)
pc1, pc2 = -1, 1 # use P3's prime candidates sequence
until (pc1 += 6) > Math.sqrt(n).to_i # pcs are only 1/3 of all integers
return false if n % pc1 == 0 || n % (pc2 += 6) == 0 # if n is composite
end
true
end
# Compute b**e mod m
def powmod(b, e, m)
r, b = 1.to_big_i, b.to_big_i
while e > 0
r = (r * b) % m if e.odd?
b = (b * b) % m
e >>= 1
end
r
end
def mersenne_factor(p)
mers_num = 2.to_big_i ** p - 1
kp2 = p2 = 2.to_big_i * p
while (kp2 - 1) ** 2 < mers_num
q = kp2 + 1 # return q if it's a factor
return q if [1, 7].includes?(q % 8) && prime?(q) && (powmod(2, p, q) == 1)
kp2 += p2
end
true # could also set to `0` value to check for
end
def check_mersenne(p)
print "M#{p} = 2**#{p}-1 is "
f = mersenne_factor(p)
(puts "prime"; return) if f.is_a?(Bool) # or f == 0
puts "composite with factor #{f}"
end
(2..53).each { |p| check_mersenne(p) if prime?(p) }
check_mersenne 929 |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Go | Go | package main
import "fmt"
type frac struct{ num, den int }
func (f frac) String() string {
return fmt.Sprintf("%d/%d", f.num, f.den)
}
func f(l, r frac, n int) {
m := frac{l.num + r.num, l.den + r.den}
if m.den <= n {
f(l, m, n)
fmt.Print(m, " ")
f(m, r, n)
}
}
func main() {
// task 1. solution by recursive generation of mediants
for n := 1; n <= 11; n++ {
l := frac{0, 1}
r := frac{1, 1}
fmt.Printf("F(%d): %s ", n, l)
f(l, r, n)
fmt.Println(r)
}
// task 2. direct solution by summing totient function
// 2.1 generate primes to 1000
var composite [1001]bool
for _, p := range []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31} {
for n := p * 2; n <= 1000; n += p {
composite[n] = true
}
}
// 2.2 generate totients to 1000
var tot [1001]int
for i := range tot {
tot[i] = 1
}
for n := 2; n <= 1000; n++ {
if !composite[n] {
tot[n] = n - 1
for a := n * 2; a <= 1000; a += n {
f := n - 1
for r := a / n; r%n == 0; r /= n {
f *= n
}
tot[a] *= f
}
}
}
// 2.3 sum totients
for n, sum := 1, 1; n <= 1000; n++ {
sum += tot[n]
if n%100 == 0 {
fmt.Printf("|F(%d)|: %d\n", n, sum)
}
}
} |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #Quackery | Quackery | [ dup dip digitsum mod ] is fairshare ( n n --> n )
' [ 2 3 5 11 ]
witheach
[ dup echo say ": "
25 times
[ i^ over fairshare echo sp ]
drop cr ] |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #Racket | Racket | #lang racket
(define (Thue-Morse base)
(letrec ((q/r (curryr quotient/remainder base))
(inner (λ (n (s 0))
(match n
[0 (modulo s base)]
[(app q/r q r) (inner q (+ s r))]))))
inner))
(define (report-turns B n)
(printf "Base:\t~a\t~a~%" B (map (Thue-Morse B) (range n))))
(define (report-stats B n)
(define TM (Thue-Morse B))
(define h0 (for/hash ((b B)) (values b 0)))
(define d (for/fold ((h h0)) ((i n)) (hash-update h (TM i) add1 0)))
(define d′ (for/fold ((h (hash))) (([k v] (in-hash d))) (hash-update h v add1 0)))
(define d′′ (hash-map d′ (λ (k v) (format "~a people have ~a turn(s)" v k))))
(printf "Over ~a turns for ~a people:~a~%" n B (string-join d′′ ", ")))
(define (Fairshare-between-two-and-more)
(report-turns 2 25)
(report-turns 3 25)
(report-turns 5 25)
(report-turns 11 25)
(newline)
(report-stats 191 50000)
(report-stats 1377 50000)
(report-stats 49999 50000)
(report-stats 50000 50000)
(report-stats 50001 50000))
(module+ main
(Fairshare-between-two-and-more)) |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #Raku | Raku | sub fairshare (\b) { ^∞ .hyper.map: { .polymod( b xx * ).sum % b } }
.say for <2 3 5 11>.map: { .fmt('%2d:') ~ .&fairshare[^25]».fmt('%2d').join: ', ' }
say "\nRelative fairness of this method. Scaled fairness correlation. The closer to 1.0 each person
is, the more fair the selection algorithm is. Gets better with more iterations.";
for <2 3 5 11 39> -> $people {
print "\n$people people: \n";
for $people * 1, $people * 10, $people * 1000 -> $iterations {
my @fairness;
fairshare($people)[^$iterations].kv.map: { @fairness[$^v % $people] += $^k }
my $scale = @fairness.sum / @fairness;
my @range = @fairness.map( { $_ / $scale } );
printf "After round %4d: Best advantage: %-10.8g - Worst disadvantage: %-10.8g - Spread between best and worst: %-10.8g\n",
$iterations/$people, @range.min, @range.max, @range.max - @range.min;
}
} |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | ClearAll[Faulhaber]
bernoulliB[1] := 1/2
bernoulliB[n_] := BernoulliB[n]
Faulhaber[n_, p_] := 1/(p + 1) Sum[Binomial[p + 1, j] bernoulliB[j] n^(p + 1 - j), {j, 0, p}]
Table[Rest@CoefficientList[Faulhaber[n, t], n], {t, 0, 9}] // Grid
Faulhaber[1000, 17] |
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #Modula-2 | Modula-2 | MODULE Faulhaber;
FROM EXCEPTIONS IMPORT AllocateSource,ExceptionSource,GetMessage,RAISE;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
VAR TextWinExSrc : ExceptionSource;
(* Helper Functions *)
PROCEDURE Abs(n : INTEGER) : INTEGER;
BEGIN
IF n < 0 THEN
RETURN -n
END;
RETURN n
END Abs;
PROCEDURE Binomial(n,k : INTEGER) : INTEGER;
VAR i,num,denom : INTEGER;
BEGIN
IF (n < 0) OR (k < 0) OR (n < k) THEN
RAISE(TextWinExSrc, 0, "Argument Exception.")
END;
IF (n = 0) OR (k = 0) THEN
RETURN 1
END;
num := 1;
FOR i:=k+1 TO n DO
num := num * i
END;
denom := 1;
FOR i:=2 TO n - k DO
denom := denom * i
END;
RETURN num / denom
END Binomial;
PROCEDURE GCD(a,b : INTEGER) : INTEGER;
BEGIN
IF b = 0 THEN
RETURN a
END;
RETURN GCD(b, a MOD b)
END GCD;
PROCEDURE WriteInteger(n : INTEGER);
VAR buf : ARRAY[0..15] OF CHAR;
BEGIN
FormatString("%i", buf, n);
WriteString(buf)
END WriteInteger;
(* Fraction Handling *)
TYPE Frac = RECORD
num,denom : INTEGER;
END;
PROCEDURE InitFrac(n,d : INTEGER) : Frac;
VAR nn,dd,g : INTEGER;
BEGIN
IF d = 0 THEN
RAISE(TextWinExSrc, 0, "The denominator must not be zero.")
END;
IF n = 0 THEN
d := 1
ELSIF d < 0 THEN
n := -n;
d := -d
END;
g := Abs(GCD(n, d));
IF g > 1 THEN
n := n / g;
d := d / g
END;
RETURN Frac{n, d}
END InitFrac;
PROCEDURE EqualFrac(a,b : Frac) : BOOLEAN;
BEGIN
RETURN (a.num = b.num) AND (a.denom = b.denom)
END EqualFrac;
PROCEDURE LessFrac(a,b : Frac) : BOOLEAN;
BEGIN
RETURN a.num * b.denom < b.num * a.denom
END LessFrac;
PROCEDURE NegateFrac(f : Frac) : Frac;
BEGIN
RETURN Frac{-f.num, f.denom}
END NegateFrac;
PROCEDURE SubFrac(lhs,rhs : Frac) : Frac;
BEGIN
RETURN InitFrac(lhs.num * rhs.denom - lhs.denom * rhs.num, rhs.denom * lhs.denom)
END SubFrac;
PROCEDURE MultFrac(lhs,rhs : Frac) : Frac;
BEGIN
RETURN InitFrac(lhs.num * rhs.num, lhs.denom * rhs.denom)
END MultFrac;
PROCEDURE Bernoulli(n : INTEGER) : Frac;
VAR
a : ARRAY[0..15] OF Frac;
i,j,m : INTEGER;
BEGIN
IF n < 0 THEN
RAISE(TextWinExSrc, 0, "n may not be negative or zero.")
END;
FOR m:=0 TO n DO
a[m] := Frac{1, m + 1};
FOR j:=m TO 1 BY -1 DO
a[j-1] := MultFrac(SubFrac(a[j-1], a[j]), Frac{j, 1})
END
END;
IF n # 1 THEN RETURN a[0] END;
RETURN NegateFrac(a[0])
END Bernoulli;
PROCEDURE WriteFrac(f : Frac);
BEGIN
WriteInteger(f.num);
IF f.denom # 1 THEN
WriteString("/");
WriteInteger(f.denom)
END
END WriteFrac;
(* Target *)
PROCEDURE Faulhaber(p : INTEGER);
VAR
j,pwr,sign : INTEGER;
q,coeff : Frac;
BEGIN
WriteInteger(p);
WriteString(" : ");
q := InitFrac(1, p + 1);
sign := -1;
FOR j:=0 TO p DO
sign := -1 * sign;
coeff := MultFrac(MultFrac(MultFrac(q, Frac{sign, 1}), Frac{Binomial(p + 1, j), 1}), Bernoulli(j));
IF EqualFrac(coeff, Frac{0, 1}) THEN CONTINUE END;
IF j = 0 THEN
IF NOT EqualFrac(coeff, Frac{1, 1}) THEN
IF EqualFrac(coeff, Frac{-1, 1}) THEN
WriteString("-")
ELSE
WriteFrac(coeff)
END
END
ELSE
IF EqualFrac(coeff, Frac{1, 1}) THEN
WriteString(" + ")
ELSIF EqualFrac(coeff, Frac{-1, 1}) THEN
WriteString(" - ")
ELSIF LessFrac(Frac{0, 1}, coeff) THEN
WriteString(" + ");
WriteFrac(coeff)
ELSE
WriteString(" - ");
WriteFrac(NegateFrac(coeff))
END
END;
pwr := p + 1 - j;
IF pwr > 1 THEN
WriteString("n^");
WriteInteger(pwr)
ELSE
WriteString("n")
END
END;
WriteLn
END Faulhaber;
(* Main *)
VAR i : INTEGER;
BEGIN
FOR i:=0 TO 9 DO
Faulhaber(i)
END;
ReadChar
END Faulhaber. |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Delphi | Delphi |
;; generate a recursive lambda() for a x-nacci
;; equip it with memoïzation
;; bind it to its name
(define (make-nacci name seed)
(define len (1+ (vector-length seed)))
(define-global name
`(lambda(n) (for/sum ((i (in-range (1- n) (- n ,len) -1))) (,name i))))
(remember name seed)
name)
(define nacci-family `(
(Fibonacci #(1 1))
(Tribonacci #(1 1 2))
(Tetranacci #(1 1 2 4))
(Decanacci #(1 1 2 4 8 16 32 64 128 256))
(Random-😜-nacci ,(list->vector (take 6 (shuffle (iota 100)))))
(Lucas #(2 1))))
(define (task naccis)
(for ((nacci naccis))
(define-values (name seed) nacci)
(make-nacci name seed)
(printf "%s[%d] → %d" name (vector-length seed) (take name 16))))
|
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #REXX | REXX | /*REXX program finds the common directory path for a list of files. */
@. = /*the default for all file lists (null)*/
@.1 = '/home/user1/tmp/coverage/test'
@.2 = '/home/user1/tmp/covert/operator'
@.3 = '/home/user1/tmp/coven/members'
L= length(@.1) /*use the length of the first string. */
do j=2 while @.j\=='' /*start search with the second string. */
_= compare(@.j, @.1) /*use REXX compare BIF for comparison*/
if _==0 then iterate /*Strings are equal? Then con't use min*/
L= min(L, _) /*get the minimum length equal strings.*/
if right(@.j, 1)=='/' then iterate /*if a directory, then it's OK. */
L= lastpos('/', left(@.j, L) ) /*obtain directory name up to here*/
end /*j*/
common= left( @.1, lastpos('/', @.1, L) ) /*determine the shortest DIR string. */
if right(common, 1)=='/' then common= left(common, max(0, length(common) - 1) )
if common=='' then common= "/" /*if no common directory, assume home. */
say 'common directory path: ' common /* [↑] handle trailing / delimiter*/
/*stick a fork in it, we're all done. */ |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Erlang | Erlang | Numbers = lists:seq(1, 5).
EvenNumbers = lists:filter(fun (X) -> X rem 2 == 0 end, Numbers). |
http://rosettacode.org/wiki/Find_limit_of_recursion | Find limit of recursion | Find limit of recursion is part of Short Circuit's Console Program Basics selection.
Task
Find the limit of recursion.
| #VBScript | VBScript | 'mung.vbs
option explicit
dim c
if wscript.arguments.count = 1 then
c = wscript.arguments(0)
c = c + 1
else
c = 0
end if
wscript.echo "[Depth",c & "] Mung until no good."
CreateObject("WScript.Shell").Run "cscript Mung.vbs " & c, 1, true
wscript.echo "[Depth",c & "] no good." |
http://rosettacode.org/wiki/Find_limit_of_recursion | Find limit of recursion | Find limit of recursion is part of Short Circuit's Console Program Basics selection.
Task
Find the limit of recursion.
| #Vlang | Vlang | // Find limit of recursion, in V
module main
// starts here, then call down until stacks become faulty
pub fn main() {
recurse(0)
}
fn recurse(n int) {
println(n)
recurse(n+1)
} |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Hy | Hy | (for [i (range 1 101)] (print (cond
[(not (% i 15)) "FizzBuzz"]
[(not (% i 5)) "Buzz"]
[(not (% i 3)) "Fizz"]
[True i]))) |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Ring | Ring | See len(read('input.txt')) + nl
see len(read('/input.txt')) + nl |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Ruby | Ruby | size = File.size('input.txt')
size = File.size('/input.txt') |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Run_BASIC | Run BASIC | print fileSize(DefaultDir$,"input.txt") ' current default directory
print fileSize("","input.txt") ' root directory
function fileSize(dir$,file$)
open dir$;"\";file$ FOR input as #f
fileSize = lof(#f) ' Length Of File
close #f
end function |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Julia | Julia | mystring = read("file1", String)
open(io->write(io, mystring), "file2", "w") |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #K | K | `output.txt 0:0:`input.txt |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Pascal | Pascal | program FibWord;
{$IFDEF DELPHI}
{$APPTYPE CONSOLE}
{$ENDIF}
const
FibSMaxLen = 35;
type
tFibString = string[2*FibSMaxLen];//Ansistring;
tFibCnt = longWord;
tFib = record
ZeroCnt,
OneCnt : tFibCnt;
// fibS : tFibString;//didn't work :-(
end;
var
FibSCheck : boolean;
Fib0,Fib1 : tFib;
FibS0,FibS1: tFibString;
procedure FibInit;
Begin
with Fib0 do
begin
ZeroCnt := 1;
OneCnt := 0;
end;
with Fib1 do
begin
ZeroCnt := 0;
OneCnt := 1;
end;
FibS0 := '1';
FibS1 := '0';
FibSCheck := true;
end;
Function FibLength(const F:Tfib):tFibCnt;
begin
FibLength := F.ZeroCnt+F.OneCnt;
end;
function FibEntropy(const F:Tfib):extended;
const
rcpLn2 = 1.0/ln(2);
var
entrp,
ratio: extended;
begin
entrp := 0.0;
ratio := F.ZeroCnt/FibLength(F);
if Ratio <> 0.0 then
entrp := -ratio*ln(ratio)*rcpLn2;
ratio := F.OneCnt/FibLength(F);
if Ratio <> 0.0 then
entrp := entrp-ratio*ln(ratio)*rcpLn2;
FibEntropy:=entrp
end;
procedure FibSExtend;
var
tmpS : tFibString;
begin
IF FibSCheck then
begin
tmpS := FibS0+FibS1;
FibS0 := FibS1;
FibS1 := tmpS;
FibSCheck := (length(FibS1) < FibSMaxLen);
end;
end;
procedure FibNext;
var
tmpFib : tFib;
Begin
tmpFib.ZeroCnt := Fib0.ZeroCnt+Fib1.ZeroCnt;
tmpFib.OneCnt := Fib0.OneCnt +Fib1.OneCnt;
Fib0 := Fib1;
Fib1 := tmpFib;
IF FibSCheck then
FibSExtend;
end;
procedure FibWrite(const F:Tfib);
begin
// With F do
// write(ZeroCnt:10,OneCnt:10,FibLength(F):10,FibEntropy(f):17:14);
write(FibLength(F):10,FibEntropy(F):17:14);
IF FibSCheck then
writeln(' ',FibS1)
else
writeln(' ....');
end;
var
i : integer;
BEGIN
FibInit;
writeln('No. Length Entropy Word');
write(1:4);FibWrite(Fib0);
write(2:4);FibWrite(Fib1);
For i := 3 to 37 do
begin
FibNext;
write(i:4);
FibWrite(Fib1);
end;
END.
|
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Ruby | Ruby | def fasta_format(strings)
out, text = [], ""
strings.split("\n").each do |line|
if line[0] == '>'
out << text unless text.empty?
text = line[1..-1] + ": "
else
text << line
end
end
out << text unless text.empty?
end
data = <<'EOS'
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
EOS
puts fasta_format(data) |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Run_BASIC | Run BASIC | a$ = ">Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED"
i = 1
while i <= len(a$)
if mid$(a$,i,17) = ">Rosetta_Example_" then
print
print mid$(a$,i,18);": ";
i = i + 17
else
if asc(mid$(a$,i,1)) > 20 then print mid$(a$,i,1);
end if
i = i + 1
wend |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Rust | Rust |
use std::env;
use std::io::{BufReader, Lines};
use std::io::prelude::*;
use std::fs::File;
fn main() {
let args: Vec<String> = env::args().collect();
let f = File::open(&args[1]).unwrap();
for line in FastaIter::new(f) {
println!("{}", line);
}
}
struct FastaIter<T> {
buffer_lines: Lines<BufReader<T>>,
current_name: Option<String>,
current_sequence: String
}
impl<T: Read> FastaIter<T> {
fn new(file: T) -> FastaIter<T> {
FastaIter { buffer_lines: BufReader::new(file).lines(),
current_name: None,
current_sequence: String::new() }
}
}
impl<T: Read> Iterator for FastaIter<T> {
type Item = String;
fn next(&mut self) -> Option<String> {
while let Some(l) = self.buffer_lines.next() {
let line = l.unwrap();
if line.starts_with(">") {
if self.current_name.is_some() {
let mut res = String::new();
res.push_str(self.current_name.as_ref().unwrap());
res.push_str(": ");
res.push_str(&self.current_sequence);
self.current_name = Some(String::from(&line[1..]));
self.current_sequence.clear();
return Some(res);
} else {
self.current_name = Some(String::from(&line[1..]));
self.current_sequence.clear();
}
continue;
}
self.current_sequence.push_str(line.trim());
}
if self.current_name.is_some() {
let mut res = String::new();
res.push_str(self.current_name.as_ref().unwrap());
res.push_str(": ");
res.push_str(&self.current_sequence);
self.current_name = None;
self.current_sequence.clear();
self.current_sequence.shrink_to_fit();
return Some(res);
}
None
}
}
|
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #ABAP | ABAP | FORM fibonacci_iter USING index TYPE i
CHANGING number_fib TYPE i.
DATA: lv_old type i,
lv_cur type i.
Do index times.
If sy-index = 1 or sy-index = 2.
lv_cur = 1.
lv_old = 0.
endif.
number_fib = lv_cur + lv_old.
lv_old = lv_cur.
lv_cur = number_fib.
enddo.
ENDFORM. |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #ALGOL_68 | ALGOL 68 | MODE YIELDINT = PROC(INT)VOID;
PROC gen factors = (INT n, YIELDINT yield)VOID: (
FOR i FROM 1 TO ENTIER sqrt(n) DO
IF n MOD i = 0 THEN
yield(i);
INT other = n OVER i;
IF i NE other THEN yield(n OVER i) FI
FI
OD
);
[]INT nums2factor = (45, 53, 64);
FOR i TO UPB nums2factor DO
INT num = nums2factor[i];
STRING sep := ": ";
print(num);
# FOR INT j IN # gen factors(num, # ) DO ( #
## (INT j)VOID:(
print((sep,whole(j,0)));
sep:=", "
# OD # ));
print(new line)
OD |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #ERRE | ERRE |
PROGRAM FFT
CONST CNT=8
!$DYNAMIC
DIM REL[0],IMG[0],CMP[0],V[0]
BEGIN
SIG=INT(LOG(CNT)/LOG(2)+0.9999)
REAL1=2^SIG
REAL=REAL1-1
REAL2=INT(REAL1/2)
REAL4=INT(REAL1/4)
REAL3=REAL4+REAL2
!$DIM REL[REAL1],IMG[REAL1],CMP[REAL3]
FOR I=0 TO CNT-1 DO
READ(REL[I],IMG[I])
END FOR
DATA(1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0)
SIG2=INT(SIG/2)
SIG1=SIG-SIG2
CNT1=2^SIG1
CNT2=2^SIG2
!$DIM V[CNT1-1]
V[0]=0
DV=1
PTR=CNT1
FOR J=1 TO SIG1 DO
HLFPTR=INT(PTR/2)
PT=CNT1-HLFPTR
FOR I=HLFPTR TO PT STEP PTR DO
V[I]=V[I-HLFPTR]+DV
END FOR
DV=2*DV
PTR=HLFPTR
END FOR
K=2*π/REAL1
FOR X=0 TO REAL4 DO
CMP[X]=COS(K*X)
CMP[REAL2-X]=-CMP[X]
CMP[REAL2+X]=-CMP[X]
END FOR
PRINT("FFT: BIT REVERSAL")
FOR I=0 TO CNT1-1 DO
IP=I*CNT2
FOR J=0 TO CNT2-1 DO
H=IP+J
G=V[J]*CNT2+V[I]
IF G>H THEN
SWAP(REL[G],REL[H])
SWAP(IMG[G],IMG[H])
END IF
END FOR
END FOR
T=1
FOR STAGE=1 TO SIG DO
PRINT("STAGE:";STAGE)
D=INT(REAL2/T)
FOR II=0 TO T-1 DO
L=D*II
LS=L+REAL4
FOR I=0 TO D-1 DO
A=2*I*T+II
B=A+T
F1=REL[A]
F2=IMG[A]
CNT1=CMP[L]*REL[B]
CNT2=CMP[LS]*IMG[B]
CNT3=CMP[LS]*REL[B]
CNT4=CMP[L]*IMG[B]
REL[A]=F1+CNT1-CNT2
IMG[A]=F2+CNT3+CNT4
REL[B]=F1-CNT1+CNT2
IMG[B]=F2-CNT3-CNT4
END FOR
END FOR
T=2*T
END FOR
PRINT("NUM REAL IMAG")
FOR I=0 TO REAL DO
IF ABS(REL[I])<1E-5 THEN REL[I]=0 END IF
IF ABS(IMG[I])<1E-5 THEN IMG[I]=0 END IF
PRINT(I;"";)
WRITE("##.###### ##.######";REL[I];IMG[I])
END FOR
END PROGRAM
|
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #D | D | import std.stdio, std.math, std.traits;
ulong mersenneFactor(in ulong p) pure nothrow @nogc {
static bool isPrime(T)(in T n) pure nothrow @nogc {
if (n < 2 || n % 2 == 0)
return n == 2;
for (Unqual!T i = 3; i ^^ 2 <= n; i += 2)
if (n % i == 0)
return false;
return true;
}
static ulong modPow(in ulong cb, in ulong ce,in ulong m)
pure nothrow @nogc {
ulong b = cb;
ulong result = 1;
for (ulong e = ce; e > 0; e >>= 1) {
if ((e & 1) == 1)
result = (result * b) % m;
b = (b ^^ 2) % m;
}
return result;
}
immutable ulong limit = p <= 64 ? cast(ulong)(real(2.0) ^^ p - 1).sqrt : uint.max; // prevents silent overflows
for (ulong k = 1; (2 * p * k + 1) < limit; k++) {
immutable ulong q = 2 * p * k + 1;
if ((q % 8 == 1 || q % 8 == 7) && isPrime(q) &&
modPow(2, p, q) == 1)
return q;
}
return 1; // returns a sensible smallest factor
}
void main() {
writefln("Factor of M929: %d", 929.mersenneFactor);
} |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Haskell | Haskell | import Data.List (unfoldr, mapAccumR)
import Data.Ratio ((%), denominator, numerator)
import Text.Printf (PrintfArg, printf)
-- The n'th order Farey sequence.
farey :: Integer -> [Rational]
farey n = 0 : unfoldr step (0, 1, 1, n)
where
step (a, b, c, d)
| c > n = Nothing
| otherwise =
let k = (n + b) `quot` d
in Just (c %d, (c, d, k * c - a, k * d - b))
-- A list of pairs, (n, fn n), where fn is a function applied to the n'th order
-- Farey sequence. We assume the list of orders is increasing. Only the
-- highest order Farey sequence is evaluated; the remainder are generated by
-- successively pruning this sequence.
fareys :: ([Rational] -> a) -> [Integer] -> [(Integer, a)]
fareys fn ns = snd $ mapAccumR prune (farey $ last ns) ns
where
prune rs n =
let rs'' = filter ((<= n) . denominator) rs
in (rs'', (n, fn rs''))
fprint
:: (PrintfArg b)
=> String -> [(Integer, b)] -> IO ()
fprint fmt = mapM_ (uncurry $ printf fmt)
showFracs :: [Rational] -> String
showFracs =
unwords .
map (concat . (<*>) [show . numerator, const "/", show . denominator] . pure)
main :: IO ()
main = do
putStrLn "Farey Sequences\n"
fprint "%2d %s\n" $ fareys showFracs [1 .. 11]
putStrLn "\nSequence Lengths\n"
fprint "%4d %d\n" $ fareys length [100,200 .. 1000] |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #REXX | REXX | /*REXX program calculates N terms of the fairshare sequence for some group of peoples.*/
parse arg n g /*obtain optional arguments from the CL*/
if n=='' | n=="," then n= 25 /*Not specified? Then use the default.*/
if g='' | g="," then g= 2 3 5 11 /* " " " " " " */
/* [↑] a list of a number of peoples. */
do p=1 for words(g); r= word(g, p) /*traipse through the bases specfiied. */
$= 'base' right(r, 2)': ' /*construct start of the 1─line output.*/
do j=0 for n; $= $ right( sumDigs( base(j, r)) // r, 2)','
end /*j*/ /* [↑] append # (base R) mod R──►$ list*/
say strip($, , ",") /*elide trailing comma from the $ list.*/
end /*p*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
base: parse arg #,b,,y; @= 0123456789abcdefghijklmnopqrstuvwxyz; @@= substr(@,2)
do while #>=b; y= substr(@, #//b + 1, 1)y; #= #%b; end; return substr(@, #+1, 1)y
/*──────────────────────────────────────────────────────────────────────────────────────*/
sumDigs: parse arg x; !=0; do i=1 for length(x); != !+pos(substr(x,i,1),@@); end; return ! |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #Ring | Ring |
str = []
people = [2,3,5,11]
result = people
for i in people
str = []
see "" + i + ": "
fair(25, i)
for n in result
add(str,n)
next
showarray(str)
next
func fair n,base
result = list(n)
for i=1 to n
j = i-1
t = 0
while j>0
t = t + j % base
j = floor(j/base)
end
result[i] = t % base
next
func showarray vect
svect = ""
for n in vect
svect += " " + n + ","
next
svect = left(svect, len(svect) - 1)
? "[" + svect + "]"
|
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Nim | Nim | import algorithm, math, strutils
import bignum
type FaulhaberSequence = seq[Rat]
#---------------------------------------------------------------------------------------------------
func bernoulli(n: Natural): Rat =
## Return nth Bernoulli coefficient.
var a = newSeq[Rat](n + 1)
for m in 0..n:
a[m] = newRat(1, m + 1)
for k in countdown(m, 1):
a[k - 1] = (a[k - 1] - a[k]) * k
result = if n != 1: a[0] else: -a[0]
#---------------------------------------------------------------------------------------------------
func faulhaber(n: Natural): FaulhaberSequence =
## Return nth Faulhaber sequence (high degree first).
var a = newRat(1, n + 1)
var sign = -1
for k in 0..n:
sign = -sign
result.add(a * sign * binom(n + 1, k) * bernoulli(k))
#---------------------------------------------------------------------------------------------------
proc display(fs: FaulhaberSequence) =
## Return the string representing a Faulhaber sequence.
var str = ""
for i, coeff in reversed(fs):
str.addSep(" ", 0)
str.add(($coeff).align(6))
echo str
#---------------------------------------------------------------------------------------------------
func evaluate(fs: FaulhaberSequence; n: int): Rat =
## Evaluate the polynomial associated to a sequence for value "n".
result = newRat(0)
for coeff in fs:
result = result * n + coeff
result *= n
#———————————————————————————————————————————————————————————————————————————————————————————————————
for n in 0..9:
display(faulhaber(n))
echo ""
let fs18 = faulhaber(17) # 18th row.
echo fs18.evaluate(1000) |
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #Nim | Nim | import math, rationals
type
Fraction = Rational[int]
FaulhaberSequence = seq[Fraction]
const
Zero = 0 // 1
One = 1 // 1
MinusOne = -1 // 1
Powers = ["⁰", "¹", "²", "³", "⁴", "⁵", "⁶", "⁷", "⁸", "⁹"]
#---------------------------------------------------------------------------------------------------
func bernoulli(n: Natural): Fraction =
## Return nth Bernoulli coefficient.
var a = newSeq[Fraction](n + 1)
for m in 0..n:
a[m] = 1 // (m + 1)
for k in countdown(m, 1):
a[k - 1] = (a[k - 1] - a[k]) * k
result = if n != 1: a[0] else: -a[0]
#---------------------------------------------------------------------------------------------------
func faulhaber(n: Natural): FaulhaberSequence =
## Return nth Faulhaber sequence.
var a = 1 // (n + 1)
var sign = -1
for k in 0..n:
sign = -sign
result.add(a * sign * binom(n + 1, k) * bernoulli(k))
#---------------------------------------------------------------------------------------------------
func npower(k: Natural): string =
## Return the string representing "n" at power "k".
if k == 0: return ""
if k == 1: return "n"
var k = k
result = "n"
while k != 0:
result.insert(Powers[k mod 10], 1)
k = k div 10
#---------------------------------------------------------------------------------------------------
func `$`(fs: FaulhaberSequence): string =
## Return the string representing a Faulhaber sequence.
for i, coeff in fs:
# Process coefficient.
if coeff.num == 0: continue
if i == 0:
if coeff == MinusOne: result.add(" - ")
elif coeff != One: result.add($coeff)
else:
if coeff == One: result.add(" + ")
elif coeff == MinusOne: result.add(" - ")
elif coeff > Zero: result.add(" + " & $coeff)
else: result.add(" - " & $(-coeff))
# Process power of "n".
let pwr = fs.len - i
result.add(npower(pwr))
#———————————————————————————————————————————————————————————————————————————————————————————————————
for n in 0..9:
echo n, ": ", faulhaber(n) |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #EchoLisp | EchoLisp |
;; generate a recursive lambda() for a x-nacci
;; equip it with memoïzation
;; bind it to its name
(define (make-nacci name seed)
(define len (1+ (vector-length seed)))
(define-global name
`(lambda(n) (for/sum ((i (in-range (1- n) (- n ,len) -1))) (,name i))))
(remember name seed)
name)
(define nacci-family `(
(Fibonacci #(1 1))
(Tribonacci #(1 1 2))
(Tetranacci #(1 1 2 4))
(Decanacci #(1 1 2 4 8 16 32 64 128 256))
(Random-😜-nacci ,(list->vector (take 6 (shuffle (iota 100)))))
(Lucas #(2 1))))
(define (task naccis)
(for ((nacci naccis))
(define-values (name seed) nacci)
(make-nacci name seed)
(printf "%s[%d] → %d" name (vector-length seed) (take name 16))))
|
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ring | Ring |
# Project : Find common directory path
load "stdlib.ring"
i = null
o = null
path = list(3)
path[1] = "/home/user1/tmp/coverage/test"
path[2] = "/home/user1/tmp/covert/operator"
path[3] = "/home/user1/tmp/coven/members"
see commonpath(path, "/")
func commonpath(p, s)
while i != 0
o = i
i = substring(p[1], s, i+1)
for j = 2 to len(p)
if left(p[1], i) != left(p[j], i)
exit 2
ok
next
end
return left(p[1], o-1)
|
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ruby | Ruby | require 'abbrev'
dirs = %w( /home/user1/tmp/coverage/test /home/user1/tmp/covert/operator /home/user1/tmp/coven/members )
common_prefix = dirs.abbrev.keys.min_by {|key| key.length}.chop # => "/home/user1/tmp/cove"
common_directory = common_prefix.sub(%r{/[^/]*$}, '') # => "/home/user1/tmp" |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Euphoria | Euphoria | sequence s, evens
s = {1, 2, 3, 4, 5, 6}
evens = {}
for i = 1 to length(s) do
if remainder(s[i], 2) = 0 then
evens = append(evens, s[i])
end if
end for
? evens |
http://rosettacode.org/wiki/Find_limit_of_recursion | Find limit of recursion | Find limit of recursion is part of Short Circuit's Console Program Basics selection.
Task
Find the limit of recursion.
| #x86_Assembly | x86 Assembly | global main
section .text
main
xor eax, eax
call recurse
ret
recurse
add eax, 1
call recurse
ret |
http://rosettacode.org/wiki/Find_limit_of_recursion | Find limit of recursion | Find limit of recursion is part of Short Circuit's Console Program Basics selection.
Task
Find the limit of recursion.
| #Wren | Wren | var f
f = Fn.new { |n|
if (n%500 == 0) System.print(n) // print progress after every 500 calls
System.write("") // required to fix a VM recursion bug
f.call(n + 1)
}
f.call(1) |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #i | i | software {
for each 1 to 100
if i % 15 = 0
print("FizzBuzz")
else if i % 3 = 0
print("Fizz")
else if i % 5 = 0
print("Buzz")
else
print(i)
end
end
} |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Rust | Rust | use std::{env, fs, process};
use std::io::{self, Write};
use std::fmt::Display;
fn main() {
let file_name = env::args().nth(1).unwrap_or_else(|| exit_err("No file name supplied", 1));
let metadata = fs::metadata(file_name).unwrap_or_else(|e| exit_err(e, 2));
println!("Size of file.txt is {} bytes", metadata.len());
}
#[inline]
fn exit_err<T: Display>(msg: T, code: i32) -> ! {
writeln!(&mut io::stderr(), "Error: {}", msg).expect("Could not write to stdout");
process::exit(code)
}
} |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Scala | Scala | import java.io.File
object FileSize extends App {
val name = "pg1661.txt"
println(s"$name : ${new File(name).length()} bytes")
println(s"/$name : ${new File(s"${File.separator}$name").length()} bytes")
} |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Scheme | Scheme |
(define (file-size filename)
(call-with-input-file filename (lambda (port)
(let loop ((c (read-char port))
(count 0))
(if (eof-object? c)
count
(loop (read-char port) (+ 1 count)))))))
(file-size "input.txt")
(file-size "/input.txt")
|
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Kotlin | Kotlin | // version 1.1.2
import java.io.File
fun main(args: Array<String>) {
val text = File("input.txt").readText()
File("output.txt").writeText(text)
} |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #LabVIEW | LabVIEW | : puts(*) . "\n" . ;
: set-file '> swap open ;
: >>contents slurp puts ;
: copy-file
swap set-file 'fdst set fdst fout >>contents fdst close ;
'output.txt 'input.txt copy-file |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Perl | Perl | sub fiboword;
{
my ($a, $b, $count) = (1, 0, 0);
sub fiboword {
$count++;
return $a if $count == 1;
return $b if $count == 2;
($a, $b) = ($b, "$b$a");
return $b;
}
}
sub entropy {
my %c;
$c{$_}++ for split //, my $str = shift;
my $e = 0;
for (values %c) {
my $p = $_ / length $str;
$e -= $p * log $p;
}
return $e / log 2;
}
my $count;
while ($count++ < 37) {
my $word = fiboword;
printf "%5d\t%10d\t%.8e\t%s\n",
$count,
length($word),
entropy($word),
$count > 9 ? '' : $word
} |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Scala | Scala | import java.io.File
import java.util.Scanner
object ReadFastaFile extends App {
val sc = new Scanner(new File("test.fasta"))
var first = true
while (sc.hasNextLine) {
val line = sc.nextLine.trim
if (line.charAt(0) == '>') {
if (first) first = false
else println()
printf("%s: ", line.substring(1))
}
else print(line)
}
println("~~~+~~~")
} |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Scheme | Scheme | (import (scheme base)
(scheme file)
(scheme write))
(with-input-from-file ; reads text from named file, one line at a time
"fasta.txt"
(lambda ()
(do ((first-line? #t #f)
(line (read-line) (read-line)))
((eof-object? line) (newline))
(cond ((char=? #\> (string-ref line 0)) ; found a name
(unless first-line? ; no newline on first name
(newline))
(display (string-copy line 1)) (display ": "))
(else ; display the string directly
(display line)))))) |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #ACL2 | ACL2 | (defun fast-fib-r (n a b)
(if (or (zp n) (zp (1- n)))
b
(fast-fib-r (1- n) b (+ a b))))
(defun fast-fib (n)
(fast-fib-r n 1 1))
(defun first-fibs-r (n i)
(declare (xargs :measure (nfix (- n i))))
(if (zp (- n i))
nil
(cons (fast-fib i)
(first-fibs-r n (1+ i)))))
(defun first-fibs (n)
(first-fibs-r n 0)) |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #ALGOL_W | ALGOL W | begin
% return the factors of n ( n should be >= 1 ) in the array factor %
% the bounds of factor should be 0 :: len (len must be at least 1) %
% the number of factors will be returned in factor( 0 ) %
procedure getFactorsOf ( integer value n
; integer array factor( * )
; integer value len
) ;
begin
for i := 0 until len do factor( i ) := 0;
if n >= 1 and len >= 1 then begin
integer pos, lastFactor;
factor( 0 ) := factor( 1 ) := pos := 1;
% find the factors up to sqrt( n ) %
for f := 2 until truncate( sqrt( n ) ) + 1 do begin
if ( n rem f ) = 0 and pos <= len then begin
% found another factor and there's room to store it %
pos := pos + 1;
factor( 0 ) := pos;
factor( pos ) := f
end if_found_factor
end for_f;
% find the factors above sqrt( n ) %
lastFactor := factor( factor( 0 ) );
for f := factor( 0 ) step -1 until 1 do begin
integer newFactor;
newFactor := n div factor( f );
if newFactor > lastFactor and pos <= len then begin
% found another factor and there's room to store it %
pos := pos + 1;
factor( 0 ) := pos;
factor( pos ) := newFactor
end if_found_factor
end for_f;
end if_params_ok
end getFactorsOf ;
% prpocedure to test getFactorsOf %
procedure testFactorsOf( integer value n ) ;
begin
integer array factor( 0 :: 100 );
getFactorsOf( n, factor, 100 );
i_w := 1; s_w := 0; % set output format %
write( n, " has ", factor( 0 ), " factors:" );
for f := 1 until factor( 0 ) do writeon( " ", factor( f ) )
end testFactorsOf ;
% test the factorising %
for i := 1 until 100 do testFactorsOf( i )
end. |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #Factor | Factor |
IN: USE math.transforms.fft
IN: { 1 1 1 1 0 0 0 0 } fft .
{
C{ 4.0 0.0 }
C{ 1.0 -2.414213562373095 }
C{ 0.0 0.0 }
C{ 1.0 -0.4142135623730949 }
C{ 0.0 0.0 }
C{ 0.9999999999999999 0.4142135623730949 }
C{ 0.0 0.0 }
C{ 0.9999999999999997 2.414213562373095 }
}
|
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Delphi | Delphi |
;; M = 2^P - 1 , P prime
;; look for a prime divisor q such as : q < √ M, q = 1 or 7 modulo 8, q = 1 + 2kP
;; q is divisor if (powmod 2 P q) = 1
;; m-divisor returns q or #f
(define ( m-divisor P )
;; must limit the search as √ M may be HUGE
(define maxprime (min 1_000_000_000 (sqrt (expt 2 P))))
(for ((q (in-range 1 maxprime (* 2 P))))
#:when (member (modulo q 8) '(1 7))
#:when (prime? q)
#:break (= 1 (powmod 2 P q)) => q
#f ))
(m-divisor 929)
→ 13007
(m-divisor 4423)
→ #f
(lib 'bigint)
(prime? (1- (expt 2 4423))) ;; 2^4423 -1 is a Mersenne prime
→ #t
|
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #J | J | Farey=: x:@/:~@(0 , ~.)@(#~ <:&1)@:,@(%/~@(1 + i.)) NB. calculates Farey sequence
displayFarey=: ('r/' charsub '0r' , ,&'r1')@": NB. format character representation of Farey sequence according to task requirements
order=: ': ' ,~ ": NB. decorate order of Farey sequence |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Java | Java | import java.util.TreeSet;
public class Farey{
private static class Frac implements Comparable<Frac>{
int num;
int den;
public Frac(int num, int den){
this.num = num;
this.den = den;
}
@Override
public String toString(){
return num + "/" + den;
}
@Override
public int compareTo(Frac o){
return Double.compare((double)num / den, (double)o.num / o.den);
}
}
public static TreeSet<Frac> genFarey(int i){
TreeSet<Frac> farey = new TreeSet<Frac>();
for(int den = 1; den <= i; den++){
for(int num = 0; num <= den; num++){
farey.add(new Frac(num, den));
}
}
return farey;
}
public static void main(String[] args){
for(int i = 1; i <= 11; i++){
System.out.println("F" + i + ": " + genFarey(i));
}
for(int i = 100; i <= 1000; i += 100){
System.out.println("F" + i + ": " + genFarey(i).size() + " members");
}
}
} |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #Ruby | Ruby | def turn(base, n)
sum = 0
while n != 0 do
rem = n % base
n = n / base
sum = sum + rem
end
return sum % base
end
def fairshare(base, count)
print "Base %2d: " % [base]
for i in 0 .. count - 1 do
t = turn(base, i)
print " %2d" % [t]
end
print "\n"
end
def turnCount(base, count)
cnt = Array.new(base, 0)
for i in 0 .. count - 1 do
t = turn(base, i)
cnt[t] = cnt[t] + 1
end
minTurn = base * count
maxTurn = -1
portion = 0
for i in 0 .. base - 1 do
if cnt[i] > 0 then
portion = portion + 1
end
if cnt[i] < minTurn then
minTurn = cnt[i]
end
if cnt[i] > maxTurn then
maxTurn = cnt[i]
end
end
print " With %d people: " % [base]
if 0 == minTurn then
print "Only %d have a turn\n" % portion
elsif minTurn == maxTurn then
print "%d\n" % [minTurn]
else
print "%d or %d\n" % [minTurn, maxTurn]
end
end
def main
fairshare(2, 25)
fairshare(3, 25)
fairshare(5, 25)
fairshare(11, 25)
puts "How many times does each get a turn in 50000 iterations?"
turnCount(191, 50000)
turnCount(1377, 50000)
turnCount(49999, 50000)
turnCount(50000, 50000)
turnCount(50001, 50000)
end
main() |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Pascal | Pascal |
program FaulhaberTriangle;
uses uIntX, uEnums, // units in the library IntXLib4Pascal
SysUtils;
// Convert a rational num/den to a string, right-justified in the given width.
// Before converting, remove any common factor of num and den.
// For this application we can assume den > 0.
function RationalToString( num, den : TIntX;
minWidth : integer) : string;
var
num1, den1, divisor : TIntX;
w : integer;
begin
divisor := TIntX.GCD( num, den);
// TIntx.Divide requires the caller to specifiy the division mode
num1 := TIntx.Divide( num, divisor, uEnums.dmClassic);
den1 := TIntx.Divide( den, divisor, uEnums.dmClassic);
result := num1.ToString;
if not den1.IsOne then result := result + '/' + den1.ToString;
w := minWidth - Length( result);
if (w > 0) then result := StringOfChar(' ', w) + result;
end;
// Main routine
const
r_MAX = 17;
var
g : array [1..r_MAX + 1] of TIntX;
r, s, k : integer;
r_1_fac, sum, k_intx : TIntX;
begin
// Calculate rows 0..17 of Faulhaner's triangle, and show rows 0..9.
// For a given r, the subarray g[1..(r+1)] contains (r + 1)! times row r.
r_1_fac := 1; // (r + 1)!
g[1] := 1;
for r := 0 to r_MAX do begin
r_1_fac := r_1_fac * (r+1);
sum := 0;
for s := r downto 1 do begin
g[s + 1] := r*(r+1)*g[s] div (s+1);
sum := sum + g[s + 1];
end;
g[1] := r_1_fac - sum; // the scaled row must sum to (r + 1)!
if (r <= 9) then begin
for s := 1 to r + 1 do Write( RationalToString( g[s], r_1_fac, 7));
WriteLn;
end;
end;
// Use row 17 to sum 17th powers from 1 to 1000
sum := 0;
for s := r_MAX + 1 downto 1 do sum := (sum + g[s]) * 1000;
sum := TIntx.Divide( sum, r_1_fac, uEnums.dmClassic);
WriteLn;
WriteLn( 'Sum by Faulhaber = ' + sum.ToString);
// Check by direct calculation
sum := 0;
for k := 1 to 1000 do begin
k_intx := k;
sum := sum + TIntX.Pow( k_intx, r_MAX);
end;
WriteLn( 'by direct calc. = ' + sum.ToString);
end.
|
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #PARI.2FGP | PARI/GP |
\\ Using "Faulhaber's" formula based on Bernoulli numbers. aev 2/7/17
\\ In str string replace all occurrences of the search string ssrch with the replacement string srepl. aev 3/8/16
sreplace(str,ssrch,srepl)={
my(sn=#str,ssn=#ssrch,srn=#srepl,sres="",Vi,Vs,Vz,vin,vin1,vi,L=List(),tok,zi,js=1);
if(sn==0,return("")); if(ssn==0||ssn>sn,return(str));
\\ Vi - found ssrch indexes
Vi=sfindalls(str,ssrch); vin=#Vi;
if(vin==0,return(str));
vin1=vin+1; Vi=Vec(Vi,vin1); Vi[vin1]=sn+1;
for(i=1,vin1, vi=Vi[i];
for(j=js,sn, \\print("ij:",i,"/",j,": ",sres);
if(j!=vi, sres=concat(sres,ssubstr(str,j,1)),
sres=concat(sres,srepl); js=j+ssn; break)
); \\fend j
); \\fend i
return(sres);
}
B(n)=(bernfrac(n));
Comb(n,k)={my(r=0); if(k<=n, r=n!/(n-k)!/k!); return(r)};
Faulhaber2(p)={
my(s="",s1="",s2="",c1=0,c2=0);
for(j=0,p, c1=(-1)^j*Comb(p+1,j)*B(j); c2=(p+1-j);
s2="*n";
if(c1==0, next);
if(c2==1, s1="", s1=Str("^",c2));
s=Str(s,c1,s2,s1,"+") );
s=ssubstr(s,1,#s-1); s=sreplace(s,"1*n","n"); s=sreplace(s,"+-","-");
if(p==0, s="n", s=Str("(",s,")/",p+1)); print(p,": ",s);
}
{\\ Testing:
for(i=0,9, Faulhaber2(i))}
|
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Elixir | Elixir | defmodule RC do
def anynacci(start_sequence, count) do
n = length(start_sequence)
anynacci(Enum.reverse(start_sequence), count-n, n)
end
def anynacci(seq, 0, _), do: Enum.reverse(seq)
def anynacci(seq, count, n) do
next = Enum.sum(Enum.take(seq, n))
anynacci([next|seq], count-1, n)
end
end
IO.inspect RC.anynacci([1,1], 15)
naccis = [ lucus: [2,1],
fibonacci: [1,1],
tribonacci: [1,1,2],
tetranacci: [1,1,2,4],
pentanacci: [1,1,2,4,8],
hexanacci: [1,1,2,4,8,16],
heptanacci: [1,1,2,4,8,16,32],
octonacci: [1,1,2,4,8,16,32,64],
nonanacci: [1,1,2,4,8,16,32,64,128],
decanacci: [1,1,2,4,8,16,32,64,128,256] ]
Enum.each(naccis, fn {name, list} ->
:io.format("~11s: ", [name])
IO.inspect RC.anynacci(list, 15)
end) |
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Run_BASIC | Run BASIC | ' ------------------------------------------
' Find common directory to all directories
' and directories common with other Paths
' ------------------------------------------
print word$(word$(httpget$("http://tycho.usno.navy.mil/cgi-bin/timer.pl"),1,"UTC"),2,"<BR>") ' Universal time
dim path$(20)
path$(1) = "/home/user1/tmp/coverage/test"
path$(2) = "/home/user1/tmp/covert/operator"
path$(3) = "/home/user1/tmp/coven/members"
path$(4) = "/home/user1/tmp1/coverage/test"
path$(5) = "/home/user1/tmp1/covert/operator"
path$(6) = "/home/user1/tmp1/coven/members"
path$(7) = "/home/user1/tmp2/coverage/test"
path$(8) = "/home/user1/tmp2/covert/operator"
path$(9) = "/home/user1/tmp2/coven/members"
path$(10) = "/home/user1/tmp3/coverage/test"
path$(11) = "/home/user1/tmp3/covert/operator"
path$(12) = "/home/user1/tmp3/coven/members"
sqliteconnect #mem, ":memory:"
#mem execute("CREATE TABLE dirTree (seq,pos,dir)")
for i = 1 to 12
j = 1
[loop]
j = instr(path$(i),"/",j + 1)
if j > 0 then
dir$ = mid$(path$(i),1,j)
mem$ = "INSERT INTO dirTree VALUES (";i;",";j;",'";dir$;"')"
#mem execute(mem$)
goto [loop]
end if
next i
mem$ = "SELECT dir FROM dirTree GROUP BY dir HAVING count(*) = pos ORDER BY pos desc LIMIT 1"
#mem execute(mem$)
rows = #mem ROWCOUNT() 'Get the number of rows
if rows > 0 then
#row = #mem #nextrow()
print "====== Largest Directory Common to all Paths ========="
print #row dir$()
else
print "No common Directory"
end if
html "<HR>"
print "========= Common paths ================"
mem$ = "SELECT t.seq as seq,t.pos as pos,t.dir as dir,t1.seq as t1Seq ,t1.dir as t1Dir
FROM dirTree as t
JOIN dirTree as t1
ON t1.dir = t.dir
AND t1.seq > t.seq
GROUP BY t.dir,t1.seq"
html "<table border=1><TR align=center>
<TD>Seq</TD>
<TD>Path</TD>
<TD>Common Dir</TD>
<TD>Seq</TD>
<TD>With Path</TD></TR>"
#mem execute(mem$)
WHILE #mem hasanswer()
#row = #mem #nextrow()
seq = #row seq()
t1Seq = #row t1Seq()
pos = #row pos()
dir$ = #row dir$()
t1Dir$ = #row t1Dir$()
html "<TR>"
html "<TD>";seq;"</TD>"
html "<TD>";path$(seq);"</TD>"
html "<TD>";dir$;"</TD>"
html "<TD>";t1Seq;"</TD>"
html "<TD>";path$(t1Seq);"</TD>"
html "</TR>"
WEND
html "</TABLE>"
wait
end |
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Rust | Rust |
use std::path::{Path, PathBuf};
fn main() {
let paths = [
Path::new("/home/user1/tmp/coverage/test"),
Path::new("/home/user1/tmp/covert/operator"),
Path::new("/home/user1/tmp/coven/members"),
];
match common_path(&paths) {
Some(p) => println!("The common path is: {:#?}", p),
None => println!("No common paths found"),
}
}
fn common_path<I, P>(paths: I) -> Option<PathBuf>
where
I: IntoIterator<Item = P>,
P: AsRef<Path>,
{
let mut iter = paths.into_iter();
let mut ret = iter.next()?.as_ref().to_path_buf();
for path in iter {
if let Some(r) = common(ret, path.as_ref()) {
ret = r;
} else {
return None;
}
}
Some(ret)
}
fn common<A: AsRef<Path>, B: AsRef<Path>>(a: A, b: B) -> Option<PathBuf> {
let a = a.as_ref().components();
let b = b.as_ref().components();
let mut ret = PathBuf::new();
let mut found = false;
for (one, two) in a.zip(b) {
if one == two {
ret.push(one);
found = true;
} else {
break;
}
}
if found {
Some(ret)
} else {
None
}
}
|
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #F.23 | F# | let lst = [1;2;3;4;5;6]
List.filter (fun x -> x % 2 = 0) lst;;
val it : int list = [2; 4; 6] |
http://rosettacode.org/wiki/Find_limit_of_recursion | Find limit of recursion | Find limit of recursion is part of Short Circuit's Console Program Basics selection.
Task
Find the limit of recursion.
| #Z80_Assembly | Z80 Assembly | org &0000
LD SP,&FFFF ;3 bytes
loop:
or a ;1 byte, clears the carry flag
ld (&0024),sp ;4 bytes
ld hl,(&0024) ;3 bytes
push af ;1 byte
ld bc,(&0024) ;4 bytes
sbc hl,bc ;4 bytes
jr z,loop ;2 bytes
jr * ;2 bytes
;address &0024 begins here
word 0 ;placeholder for stack pointer |
http://rosettacode.org/wiki/Find_limit_of_recursion | Find limit of recursion | Find limit of recursion is part of Short Circuit's Console Program Basics selection.
Task
Find the limit of recursion.
| #zkl | zkl | fcn{self.fcn()}() |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Icon_and_Unicon | Icon and Unicon | # straight-forward modulo tester
procedure main()
every i := 1 to 100 do
if i % 15 = 0 then
write("FizzBuzz")
else if i % 5 = 0 then
write("Buzz")
else if i % 3 = 0 then
write("Fizz")
else
write(i)
end |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
const proc: main is func
begin
writeln(fileSize("input.txt"));
writeln(fileSize("/input.txt"));
end func; |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Sidef | Sidef | say (Dir.cwd + %f'input.txt' -> size);
say (Dir.root + %f'input.txt' -> size); |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Slate | Slate | (File newNamed: 'input.txt') fileInfo fileSize.
(File newNamed: '/input.txt') fileInfo fileSize. |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Lang5 | Lang5 | : puts(*) . "\n" . ;
: set-file '> swap open ;
: >>contents slurp puts ;
: copy-file
swap set-file 'fdst set fdst fout >>contents fdst close ;
'output.txt 'input.txt copy-file |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Liberty_BASIC | Liberty BASIC | nomainwin
open "input.txt" for input as #f1
qtyBytes = lof( #f1)
source$ = input$( #f1, qtyBytes)
close #f1
open "output.txt" for output as #f2
#f2 source$;
close #f2
end |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Phix | Phix | with javascript_semantics
function entropy(sequence s)
sequence symbols = unique(s),
counts = repeat(0,length(symbols))
for i=1 to length(s) do
integer k = find(s[i],symbols)
counts[k] += 1
end for
atom H = 0
for i=1 to length(counts) do
atom ci = counts[i]/length(s)
H -= ci*log2(ci)
end for
return H
end function
sequence F_words = {"1","0"}
for i=3 to 37 do
F_words = append(F_words,F_words[i-1]&F_words[i-2])
end for
for i=1 to length(F_words) do
string fi = F_words[i]
printf(1,"%2d: length %9d, entropy %f %s\n",
{i,length(fi),entropy(fi),iff(i<10?fi,"...")})
end for
|
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
const proc: main is func
local
var file: fastaFile is STD_NULL;
var string: line is "";
var boolean: first is TRUE;
begin
fastaFile := open("fasta_format.in", "r");
if fastaFile <> STD_NULL then
while hasNext(fastaFile) do
line := getln(fastaFile);
if startsWith(line, ">") then
if first then
first := FALSE;
else
writeln;
end if;
write(line[2 ..] <& ": ");
else
write(line);
end if;
end while;
close(fastaFile);
end if;
writeln;
end func; |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Sidef | Sidef | func fasta_format(strings) {
var out = []
var text = ''
for line in (strings.lines) {
if (line.begins_with('>')) {
text.len && (out << text)
text = line.substr(1)+': '
}
else {
text += line
}
}
text.len && (out << text)
return out
}
fasta_format(DATA.slurp).each { .say }
__DATA__
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Tcl | Tcl | proc fastaReader {filename} {
set f [open $filename]
set sep ""
while {[gets $f line] >= 0} {
if {[string match >* $line]} {
puts -nonewline "$sep[string range $line 1 end]: "
set sep "\n"
} else {
puts -nonewline $line
}
}
puts ""
close $f
}
fastaReader ./rosettacode.fas |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Action.21 | Action! | INT FUNC Fibonacci(INT n)
INT curr,prev,tmp
IF n>=-1 AND n<=1 THEN
RETURN (n)
FI
prev=0
IF n>0 THEN
curr=1
DO
tmp=prev
prev=curr
curr==+tmp
n==-1
UNTIL n=1
OD
ELSE
curr=-1
DO
tmp=prev
prev=curr
curr==+tmp
n==+1
UNTIL n=-1
OD
FI
RETURN (curr)
PROC Main()
BYTE n
INT f
Put(125) ;clear screen
FOR n=0 TO 22
DO
f=Fibonacci(n)
Position(2,n+1)
PrintF("Fib(%I)=%I",n,f)
IF n>0 THEN
f=Fibonacci(-n)
Position(21,n+1)
PrintF("Fib(%I)=%I",-n,f)
FI
OD
RETURN |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #ALGOL-M | ALGOL-M |
BEGIN
COMMENT RETURN P MOD Q;
INTEGER FUNCTION MOD (P, Q);
INTEGER P, Q;
BEGIN
MOD := P - Q * (P / Q);
END;
INTEGER I, N, LIMIT, FOUND, START, DELTA;
WHILE 1 = 1 DO
BEGIN
WRITE ("NUMBER TO FACTOR (OR 0 TO QUIT):");
READ (N);
IF N = 0 THEN GOTO DONE;
WRITE ("THE FACTORS ARE:");
COMMENT CHECK WHETHER NUMBER IS EVEN OR ODD;
IF MOD(N, 2) = 0 THEN
BEGIN
START := 2;
DELTA := 1;
END
ELSE
BEGIN
START := 3;
DELTA := 2;
END;
COMMENT TEST POTENTIAL DIVISORS;
FOUND := 0;
I := START;
LIMIT := N / I;
WHILE I <= LIMIT DO
BEGIN
IF MOD(N, I) = 0 THEN
BEGIN
WRITEON (I);
FOUND := FOUND + 1;
END;
I := I + DELTA;
IF FOUND = 0 THEN LIMIT := N / I;
END;
IF FOUND = 0 THEN WRITEON (" NONE - THE NUMBER IS PRIME.");
WRITE("");
END;
DONE: WRITE ("GOODBYE");
END |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #Fortran | Fortran |
module fft_mod
implicit none
integer, parameter :: dp=selected_real_kind(15,300)
real(kind=dp), parameter :: pi=3.141592653589793238460_dp
contains
! In place Cooley-Tukey FFT
recursive subroutine fft(x)
complex(kind=dp), dimension(:), intent(inout) :: x
complex(kind=dp) :: t
integer :: N
integer :: i
complex(kind=dp), dimension(:), allocatable :: even, odd
N=size(x)
if(N .le. 1) return
allocate(odd((N+1)/2))
allocate(even(N/2))
! divide
odd =x(1:N:2)
even=x(2:N:2)
! conquer
call fft(odd)
call fft(even)
! combine
do i=1,N/2
t=exp(cmplx(0.0_dp,-2.0_dp*pi*real(i-1,dp)/real(N,dp),kind=dp))*even(i)
x(i) = odd(i) + t
x(i+N/2) = odd(i) - t
end do
deallocate(odd)
deallocate(even)
end subroutine fft
end module fft_mod
program test
use fft_mod
implicit none
complex(kind=dp), dimension(8) :: data = (/1.0, 1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0/)
integer :: i
call fft(data)
do i=1,8
write(*,'("(", F20.15, ",", F20.15, "i )")') data(i)
end do
end program test |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #EchoLisp | EchoLisp |
;; M = 2^P - 1 , P prime
;; look for a prime divisor q such as : q < √ M, q = 1 or 7 modulo 8, q = 1 + 2kP
;; q is divisor if (powmod 2 P q) = 1
;; m-divisor returns q or #f
(define ( m-divisor P )
;; must limit the search as √ M may be HUGE
(define maxprime (min 1_000_000_000 (sqrt (expt 2 P))))
(for ((q (in-range 1 maxprime (* 2 P))))
#:when (member (modulo q 8) '(1 7))
#:when (prime? q)
#:break (= 1 (powmod 2 P q)) => q
#f ))
(m-divisor 929)
→ 13007
(m-divisor 4423)
→ #f
(lib 'bigint)
(prime? (1- (expt 2 4423))) ;; 2^4423 -1 is a Mersenne prime
→ #t
|
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Julia | Julia | using DataStructures
function farey(n::Int)
rst = SortedSet{Rational}(Rational[0, 1])
for den in 1:n, num in 1:den-1
push!(rst, Rational(num, den))
end
return rst
end
for n in 1:11
print("F_$n: ")
for frac in farey(n)
print(numerator(frac), "/", denominator(frac), " ")
end
println()
end
for n in 100:100:1000
println("F_$n has ", length(farey(n)), " fractions")
end |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Kotlin | Kotlin | // version 1.1
fun farey(n: Int): List<String> {
var a = 0
var b = 1
var c = 1
var d = n
val f = mutableListOf("$a/$b")
while (c <= n) {
val k = (n + b) / d
val aa = a
val bb = b
a = c
b = d
c = k * c - aa
d = k * d - bb
f.add("$a/$b")
}
return f.toList()
}
fun main(args: Array<String>) {
for (i in 1..11)
println("${"%2d".format(i)}: ${farey(i).joinToString(" ")}")
println()
for (i in 100..1000 step 100)
println("${"%4d".format(i)}: ${"%6d".format(farey(i).size)} fractions")
} |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #Rust | Rust | struct Digits {
rest: usize,
base: usize,
}
impl Iterator for Digits {
type Item = usize;
fn next(&mut self) -> Option<usize> {
if self.rest == 0 {
return None;
}
let (digit, rest) = (self.rest % self.base, self.rest / self.base);
self.rest = rest;
Some(digit)
}
}
fn digits(num: usize, base: usize) -> Digits {
Digits { rest: num, base: base }
}
struct FairSharing {
participants: usize,
index: usize,
}
impl Iterator for FairSharing {
type Item = usize;
fn next(&mut self) -> Option<usize> {
let digit_sum: usize = digits(self.index, self.participants).sum();
let selected = digit_sum % self.participants;
self.index += 1;
Some(selected)
}
}
fn fair_sharing(participants: usize) -> FairSharing {
FairSharing { participants: participants, index: 0 }
}
fn main() {
for i in vec![2, 3, 5, 7] {
println!("{}: {:?}", i, fair_sharing(i).take(25).collect::<Vec<usize>>());
}
} |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #Sidef | Sidef | for b in (2,3,5,11) {
say ("#{'%2d' % b}: ", 25.of { .sumdigits(b) % b })
} |
http://rosettacode.org/wiki/Fairshare_between_two_and_more | Fairshare between two and more | The Thue-Morse sequence is a sequence of ones and zeros that if two people
take turns in the given order, the first persons turn for every '0' in the
sequence, the second for every '1'; then this is shown to give a fairer, more
equitable sharing of resources. (Football penalty shoot-outs for example, might
not favour the team that goes first as much if the penalty takers take turns
according to the Thue-Morse sequence and took 2^n penalties)
The Thue-Morse sequence of ones-and-zeroes can be generated by:
"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"
Sharing fairly between two or more
Use this method:
When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.
Task
Counting from zero; using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.
Show the first 25 terms of the fairshare sequence:
For two people:
For three people
For five people
For eleven people
Related tasks
Non-decimal radices/Convert
Thue-Morse
See also
A010060, A053838, A053840: The On-Line Encyclopedia of Integer Sequences® (OEIS®)
| #Visual_Basic_.NET | Visual Basic .NET | Module Module1
Function Turn(base As Integer, n As Integer) As Integer
Dim sum = 0
While n <> 0
Dim re = n Mod base
n \= base
sum += re
End While
Return sum Mod base
End Function
Sub Fairshare(base As Integer, count As Integer)
Console.Write("Base {0,2}:", base)
For i = 1 To count
Dim t = Turn(base, i - 1)
Console.Write(" {0,2}", t)
Next
Console.WriteLine()
End Sub
Sub TurnCount(base As Integer, count As Integer)
Dim cnt(base) As Integer
For i = 1 To base
cnt(i - 1) = 0
Next
For i = 1 To count
Dim t = Turn(base, i - 1)
cnt(t) += 1
Next
Dim minTurn = Integer.MaxValue
Dim maxTurn = Integer.MinValue
Dim portion = 0
For i = 1 To base
Dim num = cnt(i - 1)
If num > 0 Then
portion += 1
End If
If num < minTurn Then
minTurn = num
End If
If num > maxTurn Then
maxTurn = num
End If
Next
Console.Write(" With {0} people: ", base)
If 0 = minTurn Then
Console.WriteLine("Only {0} have a turn", portion)
ElseIf minTurn = maxTurn Then
Console.WriteLine(minTurn)
Else
Console.WriteLine("{0} or {1}", minTurn, maxTurn)
End If
End Sub
Sub Main()
Fairshare(2, 25)
Fairshare(3, 25)
Fairshare(5, 25)
Fairshare(11, 25)
Console.WriteLine("How many times does each get a turn in 50000 iterations?")
TurnCount(191, 50000)
TurnCount(1377, 50000)
TurnCount(49999, 50000)
TurnCount(50000, 50000)
TurnCount(50001, 50000)
End Sub
End Module |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Perl | Perl | use 5.010;
use List::Util qw(sum);
use Math::BigRat try => 'GMP';
use ntheory qw(binomial bernfrac);
sub faulhaber_triangle {
my ($p) = @_;
map {
Math::BigRat->new(bernfrac($_))
* binomial($p, $_)
/ $p
} reverse(0 .. $p-1);
}
# First 10 rows of Faulhaber's triangle
foreach my $p (1 .. 10) {
say map { sprintf("%6s", $_) } faulhaber_triangle($p);
}
# Extra credit
my $p = 17;
my $n = Math::BigInt->new(1000);
my @r = faulhaber_triangle($p+1);
say "\n", sum(map { $r[$_] * $n**($_ + 1) } 0 .. $#r); |
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #Perl | Perl | use 5.014;
use Math::Algebra::Symbols;
sub bernoulli_number {
my ($n) = @_;
return 0 if $n > 1 && $n % 2;
my @A;
for my $m (0 .. $n) {
$A[$m] = symbols(1) / ($m + 1);
for (my $j = $m ; $j > 0 ; $j--) {
$A[$j - 1] = $j * ($A[$j - 1] - $A[$j]);
}
}
return $A[0];
}
sub binomial {
my ($n, $k) = @_;
return 1 if $k == 0 || $n == $k;
binomial($n - 1, $k - 1) + binomial($n - 1, $k);
}
sub faulhaber_s_formula {
my ($p) = @_;
my $formula = 0;
for my $j (0 .. $p) {
$formula += binomial($p + 1, $j)
* bernoulli_number($j)
* symbols('n')**($p + 1 - $j);
}
(symbols(1) / ($p + 1) * $formula)
=~ s/\$n/n/gr =~ s/\*\*/^/gr =~ s/\*/ /gr;
}
foreach my $i (0 .. 9) {
say "$i: ", faulhaber_s_formula($i);
} |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Erlang | Erlang |
-module( fibonacci_nstep ).
-export( [nacci/2, task/0] ).
nacci( N, Ns ) when N =< erlang:length(Ns) ->
{Sequence, _Not_sequence} = lists:split( N, Ns ),
Sequence;
nacci( N, Ns ) ->
Nth = erlang:length( Ns ),
{_Nth, Sequence_reversed} = lists:foldl( fun nacci_foldl/2, {Nth, lists:reverse(Ns)}, lists:seq(Nth+1, N) ),
lists:reverse( Sequence_reversed ).
task() ->
Names_and_funs = [{X, fun (N) -> nacci( N, Y ) end} || {X, Y} <- [{fibonacci, [1, 1]}, {tribonacci, [1, 1, 2]}, {tetranacci, [1, 1, 2, 4]}, {lukas, [2, 1]}]],
[io:fwrite( "~p: ~p~n", [X, Y(10)] ) || {X, Y} <- Names_and_funs].
nacci_foldl( _N, {Nth, Ns} ) ->
{Sum_ns, _Not_sum_ns} = lists:split( Nth, Ns ),
{Nth, [lists:sum(Sum_ns) | Ns]}.
|
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Scala | Scala | object FindCommonDirectoryPath extends App {
def commonPath(paths: List[String]): String = {
def common(a: List[String], b: List[String]): List[String] = (a, b) match {
case (a :: as, b :: bs) if a equals b => a :: common(as, bs)
case _ => Nil
}
if (paths.length < 2) paths.headOption.getOrElse("")
else paths.map(_.split("/").toList).reduceLeft(common).mkString("/")
}
val test = List(
"/home/user1/tmp/coverage/test",
"/home/user1/tmp/covert/operator",
"/home/user1/tmp/coven/members"
)
println(commonPath(test))
} |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Factor | Factor | 10 <iota> >array [ even? ] filter .
! prints { 0 2 4 6 8 } |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Idris | Idris | partial
fizzBuzz : Nat -> String
fizzBuzz n = if (n `modNat` 15) == 0 then "FizzBuzz"
else if (n `modNat` 3) == 0 then "Fizz"
else if (n `modNat` 5) == 0 then "Buzz"
else show n
main : IO ()
main = sequence_ $ map (putStrLn . fizzBuzz) [1..100] |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Smalltalk | Smalltalk | (File name: 'input.txt') size printNl.
(File name: '/input.txt') size printNl. |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Standard_ML | Standard ML | val size = OS.FileSys.fileSize "input.txt" ;;
val size = OS.FileSys.fileSize "/input.txt" ; |
http://rosettacode.org/wiki/File_size | File size | Verify the size of a file called input.txt for a file in the current working directory, and another one in the file system root.
| #Stata | Stata | file open f using input.txt, read binary
file seek f eof
file seek f query
display r(loc)
file close f |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Lingo | Lingo | ----------------------------------------
-- Returns file as ByteArray
-- @param {string} tFile
-- @return {byteArray|false}
----------------------------------------
on getBytes (tFile)
fp = xtra("fileIO").new()
fp.openFile(tFile, 1)
if fp.status() then return false
data = fp.readByteArray(fp.getLength())
fp.closeFile()
return data
end
----------------------------------------
-- Saves ByteArray to file
-- @param {string} tFile
-- @param {byteArray} tString
-- @return {bool} success
----------------------------------------
on putBytes (tFile, tByteArray)
fp = xtra("fileIO").new()
fp.openFile(tFile, 2)
err = fp.status()
if not (err) then fp.delete()
else if (err and not (err = -37)) then return false
fp.createFile(tFile)
if fp.status() then return false
fp.openFile(tFile, 2)
if fp.status() then return false
fp.writeByteArray(tByteArray)
fp.closeFile()
return true
end |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Lisaac | Lisaac | Section Header
+ name := FILE_IO;
Section Public
- main <- (
+ e : ENTRY;
+ f : STD_FILE;
+ s : STRING;
e := FILE_SYSTEM.get "input.txt";
(e != NULL).if {
f ?= e.open_read_only;
(f != NULL).if {
s := STRING.create(f.size);
f.read s size (f.size);
f.close;
};
};
(s != NULL).if {
e := FILE_SYSTEM.make_file "output.txt";
(e != NULL).if {
f ?= e.open;
(f != NULL).if {
f.write s from (s.lower) size (s.count);
f.close;
};
};
};
); |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Picat | Picat | go =>
foreach(N in 1..37)
F = fib(N),
E = entropy(F),
if N <= 10 then
printf("%3d %10d %0.16f %w\n",N,length(F),E,F)
else
printf("%3d %10d %0.16f\n",N,length(F),E)
end
end,
nl.
table
fib(1) = "1".
fib(2) = "0".
fib(N) = fib(N-1) ++ fib(N-2).
entropy(L) = Entropy =>
Len = L.len,
Occ = new_map(),
foreach(E in L)
Occ.put(E, Occ.get(E,0) + 1)
end,
Entropy = -sum([P2*log2(P2) : _C=P in Occ, P2 = P/Len]). |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #PL.2FI | PL/I | fibword: procedure options (main); /* 9 October 2013 */
declare (fn, fnp1, fibword) bit (32000) varying;
declare (i, ln, lnp1, lfibword) fixed binary(31);
fn = '1'b; fnp1 = '0'b; ln, lnp1 = 1;
put skip edit (1, length(fn), fn) (f(2), f(10), x(1), b);
put skip edit (2, length(fnp1), fnp1) (f(2), f(10), x(1), b);
do i = 3 to 37;
lfibword = lnp1 + ln;
ln = lnp1;
lnp1 = lfibword;
if i <= 10 then
do;
fibword = fnp1 || fn;
put skip edit (i, length(fibword), fibword) (f(2), f(10), x(1), b);
fn = fnp1; fnp1 = fibword;
end;
else
do;
put skip edit (i, lfibword) (f(2), f(10));
end;
end;
end fibword; |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #TMG | TMG | prog: ignore(spaces)
loop: parse(line)\loop parse(( = {*} ));
line: ( name | * = {} | seqns );
name: <>> ignore(none) smark string(nonl) scopy *
( [f>0?] = {} | = {*} ) [f=0]
= { 1 2 <: > };
seqns: smark string(nonl) scopy * [f=0];
none: <<>>;
nonl: !<<
>>;
spaces: << >>;
f: 1; |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #uBasic.2F4tH | uBasic/4tH | If Cmd (0) < 2 Then Print "Usage: fasta <fasta file>" : End
If Set(a, Open (Cmd(2), "r")) < 0 Then Print "Cannot open \q";Cmd(2);"\q" : End
Do While Read (a) ' while there are lines to process
t = Tok (0) ' get a lime
If Peek(t, 0) = Ord(">") Then ' if it's a marker
Print Show (Chop(t, 1)); ": "; Show (FUNC(_Payload(a)))
Continue ' get the payload and print it
EndIf
Print "Out of sequence" : Break ' this should never happen
Loop
Close a ' close the file
End ' and end the program
_Payload ' get the payload
Param (1)
Local (4)
b@ = Dup("") ' start with an empty string
Do
c@ = Mark(a@) ' mark its position
While Read (a@) ' now read a line
d@ = Tok (0) ' get the line
If Peek (d@, 0) = Ord(">") Then e@ = Head(a@, c@) : Break
b@ = Join (b@, d@) ' marker? reset position and exit
Loop ' if not add the line to current string
Return (b@) ' return the string |
http://rosettacode.org/wiki/FASTA_format | FASTA format | In bioinformatics, long character strings are often encoded in a format called FASTA.
A FASTA file can contain several strings, each identified by a name marked by a > (greater than) character at the beginning of the line.
Task
Write a program that reads a FASTA file such as:
>Rosetta_Example_1
THERECANBENOSPACE
>Rosetta_Example_2
THERECANBESEVERAL
LINESBUTTHEYALLMUST
BECONCATENATED
Output:
Rosetta_Example_1: THERECANBENOSPACE
Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED
Note that a high-quality implementation will not hold the entire file in memory at once; real FASTA files can be multiple gigabytes in size.
| #Wren | Wren | import "io" for File
var checkNoSpaces = Fn.new { |s| !s.contains(" ") && !s.contains("\t") }
var first = true
var process = Fn.new { |line|
if (line[0] == ">") {
if (!first) System.print()
System.write("%(line[1..-1]): ")
if (first) first = false
} else if (first) {
Fiber.abort("File does not begin with '>'.")
} else if (checkNoSpaces.call(line)) {
System.write(line)
} else {
Fiber.abort("Sequence contains space(s).")
}
}
var fileName = "input.fasta"
File.open(fileName) { |file|
var offset = 0
var line = ""
while(true) {
var b = file.readBytes(1, offset)
offset = offset + 1
if (b == "\n") {
process.call(line)
line = "" // reset line variable
} else if (b == "\r") { // Windows
// wait for following "\n"
} else if (b == "") { // end of stream
System.print()
return
} else {
line = line + b
}
}
} |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #ActionScript | ActionScript | public function fib(n:uint):uint
{
if (n < 2)
return n;
return fib(n - 1) + fib(n - 2);
} |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #APL | APL | factors←{(0=(⍳⍵)|⍵)/⍳⍵}
factors 12345
1 3 5 15 823 2469 4115 12345
factors 720
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 30 36 40 45 48 60 72 80 90 120 144 180 240 360 720 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.