task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #ALGOL_68 | ALGOL 68 | PROC analytic fibonacci = (LONG INT n)LONG INT:(
LONG REAL sqrt 5 = long sqrt(5);
LONG REAL p = (1 + sqrt 5) / 2;
LONG REAL q = 1/p;
ROUND( (p**n + q**n) / sqrt 5 )
);
FOR i FROM 1 TO 30 WHILE
print(whole(analytic fibonacci(i),0));
# WHILE # i /= 30 DO
print(", ")
OD;
print(new line) |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #Asymptote | Asymptote | int[] n = {11, 21, 32, 45, 67, 519};
for(var j : n) {
write(j, suffix=none);
write(" =>", suffix=none);
for(int i = 1; i < (j/2); ++i) {
if(j % i == 0) {
write(" ", i, suffix=none);
}
}
write(" ", j);
} |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #Haskell | Haskell | import Data.Complex
-- Cooley-Tukey
fft [] = []
fft [x] = [x]
fft xs = zipWith (+) ys ts ++ zipWith (-) ys ts
where n = length xs
ys = fft evens
zs = fft odds
(evens, odds) = split xs
split [] = ([], [])
split [x] = ([x], [])
split (x:y:xs) = (x:xt, y:yt) where (xt, yt) = split xs
ts = zipWith (\z k -> exp' k n * z) zs [0..]
exp' k n = cis $ -2 * pi * (fromIntegral k) / (fromIntegral n)
main = mapM_ print $ fft [1,1,1,1,0,0,0,0] |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Go | Go | package main
import (
"fmt"
"math"
)
// limit search to small primes. really this is higher than
// you'd want it, but it's fun to factor M67.
const qlimit = 2e8
func main() {
mtest(31)
mtest(67)
mtest(929)
}
func mtest(m int32) {
// the function finds odd prime factors by
// searching no farther than sqrt(N), where N = 2^m-1.
// the first odd prime is 3, 3^2 = 9, so M3 = 7 is still too small.
// M4 = 15 is first number for which test is meaningful.
if m < 4 {
fmt.Printf("%d < 4. M%d not tested.\n", m, m)
return
}
flimit := math.Sqrt(math.Pow(2, float64(m)) - 1)
var qlast int32
if flimit < qlimit {
qlast = int32(flimit)
} else {
qlast = qlimit
}
composite := make([]bool, qlast+1)
sq := int32(math.Sqrt(float64(qlast)))
loop:
for q := int32(3); ; {
if q <= sq {
for i := q * q; i <= qlast; i += q {
composite[i] = true
}
}
if q8 := q % 8; (q8 == 1 || q8 == 7) && modPow(2, m, q) == 1 {
fmt.Printf("M%d has factor %d\n", m, q)
return
}
for {
q += 2
if q > qlast {
break loop
}
if !composite[q] {
break
}
}
}
fmt.Printf("No factors of M%d found.\n", m)
}
// base b to power p, mod m
func modPow(b, p, m int32) int32 {
pow := int64(1)
b64 := int64(b)
m64 := int64(m)
bit := uint(30)
for 1<<bit&p == 0 {
bit--
}
for {
pow *= pow
if 1<<bit&p != 0 {
pow *= b64
}
pow %= m64
if bit == 0 {
break
}
bit--
}
return int32(pow)
} |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Phix | Phix | with javascript_semantics
function farey(integer n)
integer a=0, b=1, c=1, d=n, items=1
if n<=11 then
printf(1,"%d: %d/%d",{n,a,b})
end if
while c<=n do
integer k = floor((n+b)/d)
{a,b,c,d} = {c,d,k*c-a,k*d-b}
items += 1
if n<=11 then
printf(1," %d/%d",{a,b})
end if
end while
return items
end function
printf(1,"Farey sequence for order 1 through 11:\n")
for i=1 to 11 do
{} = farey(i)
printf(1,"\n")
end for
sequence nf = apply(tagset(1000,100,100),farey)
printf(1,"Farey sequence fractions, 100 to 1000 by hundreds:\n%v\n",{nf})
|
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Ruby | Ruby | class Frac
attr_accessor:num
attr_accessor:denom
def initialize(n,d)
if d == 0 then
raise ArgumentError.new('d cannot be zero')
end
nn = n
dd = d
if nn == 0 then
dd = 1
elsif dd < 0 then
nn = -nn
dd = -dd
end
g = nn.abs.gcd(dd.abs)
if g > 1 then
nn = nn / g
dd = dd / g
end
@num = nn
@denom = dd
end
def to_s
if self.denom == 1 then
return self.num.to_s
else
return "%d/%d" % [self.num, self.denom]
end
end
def -@
return Frac.new(-self.num, self.denom)
end
def +(rhs)
return Frac.new(self.num * rhs.denom + self.denom * rhs.num, rhs.denom * self.denom)
end
def -(rhs)
return Frac.new(self.num * rhs.denom - self.denom * rhs.num, rhs.denom * self.denom)
end
def *(rhs)
return Frac.new(self.num * rhs.num, rhs.denom * self.denom)
end
end
FRAC_ZERO = Frac.new(0, 1)
FRAC_ONE = Frac.new(1, 1)
def bernoulli(n)
if n < 0 then
raise ArgumentError.new('n cannot be negative')
end
a = Array.new(n + 1)
a[0] = FRAC_ZERO
for m in 0 .. n do
a[m] = Frac.new(1, m + 1)
m.downto(1) do |j|
a[j - 1] = (a[j - 1] - a[j]) * Frac.new(j, 1)
end
end
if n != 1 then
return a[0]
end
return -a[0]
end
def binomial(n, k)
if n < 0 then
raise ArgumentError.new('n cannot be negative')
end
if k < 0 then
raise ArgumentError.new('k cannot be negative')
end
if n < k then
raise ArgumentError.new('n cannot be less than k')
end
if n == 0 or k == 0 then
return 1
end
num = 1
for i in k + 1 .. n do
num = num * i
end
den = 1
for i in 2 .. n - k do
den = den * i
end
return num / den
end
def faulhaberTriangle(p)
coeffs = Array.new(p + 1)
coeffs[0] = FRAC_ZERO
q = Frac.new(1, p + 1)
sign = -1
for j in 0 .. p do
sign = -sign
coeffs[p - j] = q * Frac.new(sign, 1) * Frac.new(binomial(p + 1, j), 1) * bernoulli(j)
end
return coeffs
end
def main
for i in 0 .. 9 do
coeffs = faulhaberTriangle(i)
coeffs.each do |coeff|
print "%5s " % [coeff]
end
puts
end
end
main() |
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #Scala | Scala | import scala.math.Ordering.Implicits.infixOrderingOps
abstract class Frac extends Comparable[Frac] {
val num: BigInt
val denom: BigInt
def unary_-(): Frac = {
Frac(-num, denom)
}
def +(rhs: Frac): Frac = {
Frac(
num * rhs.denom + rhs.num * denom,
denom * rhs.denom
)
}
def -(rhs: Frac): Frac = {
Frac(
num * rhs.denom - rhs.num * denom,
denom * rhs.denom
)
}
def *(rhs: Frac): Frac = {
Frac(num * rhs.num, denom * rhs.denom)
}
override def compareTo(rhs: Frac): Int = {
val ln = num * rhs.denom
val rn = rhs.num * denom
ln.compare(rn)
}
def canEqual(other: Any): Boolean = other.isInstanceOf[Frac]
override def equals(other: Any): Boolean = other match {
case that: Frac =>
(that canEqual this) &&
num == that.num &&
denom == that.denom
case _ => false
}
override def hashCode(): Int = {
val state = Seq(num, denom)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
override def toString: String = {
if (denom == 1) {
return s"$num"
}
s"$num/$denom"
}
}
object Frac {
val ZERO: Frac = Frac(0)
val ONE: Frac = Frac(1)
def apply(n: BigInt): Frac = new Frac {
val num: BigInt = n
val denom: BigInt = 1
}
def apply(n: BigInt, d: BigInt): Frac = {
if (d == 0) {
throw new IllegalArgumentException("Parameter d may not be zero.")
}
var nn = n
var dd = d
if (nn == 0) {
dd = 1
} else if (dd < 0) {
nn = -nn
dd = -dd
}
val g = nn.gcd(dd)
if (g > 0) {
nn /= g
dd /= g
}
new Frac {
val num: BigInt = nn
val denom: BigInt = dd
}
}
}
object Faulhaber {
def bernoulli(n: Int): Frac = {
if (n < 0) {
throw new IllegalArgumentException("n may not be negative or zero")
}
val a = Array.fill(n + 1)(Frac.ZERO)
for (m <- 0 to n) {
a(m) = Frac(1, m + 1)
for (j <- m to 1 by -1) {
a(j - 1) = (a(j - 1) - a(j)) * Frac(j)
}
}
// returns 'first' Bernoulli number
if (n != 1) {
return a(0)
}
-a(0)
}
def binomial(n: Int, k: Int): Int = {
if (n < 0 || k < 0 || n < k) {
throw new IllegalArgumentException()
}
if (n == 0 || k == 0) {
return 1
}
val num = (k + 1 to n).product
val den = (2 to n - k).product
num / den
}
def faulhaber(p: Int): Unit = {
print(s"$p : ")
val q = Frac(1, p + 1)
var sign = -1
for (j <- 0 to p) {
sign *= -1
val coeff = q * Frac(sign) * Frac(binomial(p + 1, j)) * bernoulli(j)
if (Frac.ZERO != coeff) {
if (j == 0) {
if (Frac.ONE != coeff) {
if (-Frac.ONE == coeff) {
print('-')
} else {
print(coeff)
}
}
} else {
if (Frac.ONE == coeff) {
print(" + ")
} else if (-Frac.ONE == coeff) {
print(" - ")
} else if (coeff > Frac.ZERO) {
print(s" + ${coeff}")
} else {
print(s" - ${-coeff}")
}
}
val pwr = p + 1 - j
if (pwr > 1) {
print(s"n^${pwr}")
} else {
print('n')
}
}
}
println()
}
def main(args: Array[String]): Unit = {
for (i <- 0 to 9) {
faulhaber(i)
}
}
} |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #FreeBASIC | FreeBASIC | ' FB 1.05.0 Win64
' Deduces the step, n, from the length of the dynamic array passed in
' and fills it out to 'size' elements
Sub fibN (a() As Integer, size As Integer)
Dim lb As Integer = LBound(a)
Dim ub As Integer = UBound(a)
Dim length As Integer = ub - lb + 1
If length < 2 OrElse length >= size Then Return
ub = lb + size - 1
Redim Preserve a(lb To ub)
Dim sum As Integer
For i As Integer = lb + length to ub
sum = 0
For j As Integer = 1 To Length
sum += a(i - j)
Next j
a(i) = sum
Next i
End Sub
Sub printSeries(a() As Integer, name_ As String) '' name is a keyword
Print name_; " =>";
For i As Integer = LBound(a) To UBound(a)
Print Using "####"; a(i);
Print " ";
Next
Print
End Sub
Const size As Integer = 13 '' say
Redim a(1 To 2) As Integer
a(1) = 1 : a(2) = 1
fibN(a(), size)
printSeries(a(), "fibonacci ")
Redim Preserve a(1 To 3)
a(3) = 2
fibN(a(), size)
printSeries(a(), "tribonacci")
Redim Preserve a(1 To 4)
a(4) = 4
fibN(a(), size)
printSeries(a(), "tetranacci")
erase a
Redim a(1 To 2)
a(1) = 2 : a(2) = 1
fibN(a(), size)
printSeries(a(), "lucas ")
Print
Print "Press any key to quit"
Sleep |
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Visual_Basic | Visual Basic | Public Function CommonDirectoryPath(ParamArray Paths()) As String
Dim v As Variant
Dim Path() As String, s As String
Dim i As Long, j As Long, k As Long
Const PATH_SEPARATOR As String = "/"
For Each v In Paths
ReDim Preserve Path(0 To i)
Path(i) = v
i = i + 1
Next v
k = 1
Do
For i = 0 To UBound(Path)
If i Then
If InStr(k, Path(i), PATH_SEPARATOR) <> j Then
Exit Do
ElseIf Left$(Path(i), j) <> Left$(Path(0), j) Then
Exit Do
End If
Else
j = InStr(k, Path(i), PATH_SEPARATOR)
If j = 0 Then
Exit Do
End If
End If
Next i
s = Left$(Path(0), j + CLng(k <> 1))
k = j + 1
Loop
CommonDirectoryPath = s
End Function
Sub Main()
' testing the above function
Debug.Assert CommonDirectoryPath( _
"/home/user1/tmp/coverage/test", _
"/home/user1/tmp/covert/operator", _
"/home/user1/tmp/coven/members") = _
"/home/user1/tmp"
Debug.Assert CommonDirectoryPath( _
"/home/user1/tmp/coverage/test", _
"/home/user1/tmp/covert/operator", _
"/home/user1/tmp/coven/members", _
"/home/user1/abc/coven/members") = _
"/home/user1"
Debug.Assert CommonDirectoryPath( _
"/home/user1/tmp/coverage/test", _
"/hope/user1/tmp/covert/operator", _
"/home/user1/tmp/coven/members") = _
"/"
End Sub |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Futhark | Futhark |
fun main(as: []int): []int =
filter (fn x => x%2 == 0) as
|
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #J | J |
classify =: +/@(1 2 * 0 = 3 5&|~)
(":@]`('Fizz'"_)`('Buzz'"_)`('FizzBuzz'"_) @. classify "0) >:i.100
|
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #NetRexx | NetRexx | /* NetRexx */
options replace format comments java crossref symbols nobinary
import java.nio.
parse arg infileName outfileName .
if infileName = '' | infileName.length = 0 then infileName = 'data/input.txt'
if outfileName = '' | outfileName.length = 0 then outfileName = 'data/output.txt'
binaryCopy(infileName, outfileName)
return
method binaryCopy(infileName, outfileName) public static
do
infile = Paths.get('.', [String infileName])
outfile = Paths.get('.', [String outfileName])
fileOctets = Files.readAllBytes(infile)
Files.write(outfile, fileOctets, [StandardOpenOption.WRITE, StandardOpenOption.CREATE])
catch ioex = IOException
ioex.printStackTrace()
end
return
|
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Nim | Nim | import os
copyfile("input.txt", "output.txt") |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Ring | Ring |
# Project : Fibonacci word
fw1 = "1"
fw2 = "0"
see "N Length Entropy Word" + nl
n = 1
see "" + n + " " + len(fw1) + " " + calcentropy(fw1,2) + " " + fw1 + nl
n = 2
see "" + n + " " + len(fw2) + " " + calcentropy(fw2,2) + " " + fw2 + nl
for n = 1 to 55
fw3 = fw2 + fw1
temp = fw2
fw2 = fw3
fw1 = temp
if len(fw3) < 55
see "" + (n+2) + " " + len(fw3) + " " + calcentropy(fw3,2) + " " + fw3 + nl
ok
next
func calcentropy(source,b)
decimals(11)
entropy = 0
countOfChar = list(255)
charCount =len( source)
usedChar =""
for i =1 to len( source)
ch =substr(source, i, 1)
if not(substr( usedChar, ch))
usedChar =usedChar +ch
ok
j =substr( usedChar, ch)
countOfChar[j] =countOfChar[j] +1
next
l =len(usedChar)
for i =1 to l
probability =countOfChar[i] /charCount
entropy =entropy - (probability *logBase(probability, 2))
next
return entropy
func swap(a, b)
temp = a
a = b
b = temp
return [a, b]
func logBase (x, b)
logBase =log( x) /log( 2)
return logBase
|
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Ruby | Ruby | #encoding: ASCII-8BIT
def entropy(s)
counts = Hash.new(0.0)
s.each_char { |c| counts[c] += 1 }
leng = s.length
counts.values.reduce(0) do |entropy, count|
freq = count / leng
entropy - freq * Math.log2(freq)
end
end
n_max = 37
words = ['1', '0']
for n in words.length ... n_max
words << words[-1] + words[-2]
end
puts '%3s %9s %15s %s' % %w[N Length Entropy Fibword]
words.each.with_index(1) do |word, i|
puts '%3i %9i %15.12f %s' % [i, word.length, entropy(word), word.length<60 ? word : '<too long>']
end |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #ALGOL_W | ALGOL W | begin
% return the nth Fibonacci number %
integer procedure Fibonacci( integer value n ) ;
begin
integer fn, fn1, fn2;
fn2 := 1;
fn1 := 0;
fn := 0;
for i := 1 until n do begin
fn := fn1 + fn2;
fn2 := fn1;
fn1 := fn
end ;
fn
end Fibonacci ;
for i := 0 until 10 do writeon( i_w := 3, s_w := 0, Fibonacci( i ) )
end. |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #AutoHotkey | AutoHotkey | msgbox, % factors(45) "`n" factors(53) "`n" factors(64)
Factors(n)
{ Loop, % floor(sqrt(n))
{ v := A_Index = 1 ? 1 "," n : mod(n,A_Index) ? v : v "," A_Index "," n//A_Index
}
Sort, v, N U D,
Return, v
} |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #Idris | Idris | module Main
import Data.Complex
concatPair : List (a, a) -> List (a)
concatPair xs with (unzip xs)
| (xs1, xs2) = xs1 ++ xs2
fft' : List (Complex Double) -> Nat -> Nat -> List (Complex Double)
fft' (x::xs) (S Z) _ = [x]
fft' xs n s = concatPair $ map (\(x1,x2,k) =>
let eTerm = ((cis (-2 * pi * ((cast k) - 1) / (cast n))) * x2) in
(x1 + eTerm, x1 - eTerm)) $ zip3 left right [1..n `div` 2]
where
left : List (Complex Double)
right : List (Complex Double)
left = fft' (xs) (n `div` 2) (2 * s)
right = fft' (drop s xs) (n `div` 2) (2 * s)
-- Recursive Cooley-Tukey with radix-2 DIT case
-- assumes no of points provided are a power of 2
fft : List (Complex Double) -> List (Complex Double)
fft [] = []
fft xs = fft' xs (length xs) 1
main : IO()
main = traverse_ printLn $ fft [1,1,1,1,0,0,0,0] |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Haskell | Haskell | import Data.List
import HFM.Primes (isPrime)
import Control.Monad
import Control.Arrow
int2bin = reverse.unfoldr(\x -> if x==0 then Nothing
else Just ((uncurry.flip$(,))$divMod x 2))
trialfac m = take 1. dropWhile ((/=1).(\q -> foldl (((`mod` q).).pm) 1 bs)) $ qs
where qs = filter (liftM2 (&&) (liftM2 (||) (==1) (==7) .(`mod`8)) isPrime ).
map (succ.(2*m*)). enumFromTo 1 $ m `div` 2
bs = int2bin m
pm n b = 2^b*n*n |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Picat | Picat | go ?=>
member(N,1..11),
Farey = farey(N),
println(N=Farey),
fail,
nl.
go => true.
farey(N) = M =>
M1 = [0=$(0/1)] ++
[I2/J2=$(I2/J2) : I in 1..N, J in I..N,
GCD=gcd(I,J),I2 =I//GCD,J2=J//GCD].sort_remove_dups(),
M = [ E: _=E in M1]. % extract the rational representation
|
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Prolog | Prolog | task(1) :-
between(1, 11, I),
farey(I, F),
write(I), write(': '),
rwrite(F), nl, fail; true.
task(2) :- between(1, 10, I),
I100 is I*100,
farey( I100, F),
length(F,N),
write('|F('), write(I100), write(')| = '), writeln(N), fail; true.
% farey(+Order, Sequence)
farey(Order, Sequence) :-
bagof( R,
I^J^(between(1, Order, J), between(0, J, I), R is I rdiv J),
S),
predsort( rcompare, S, Sequence ).
rprint( rdiv(A,B) ) :- write(A), write(/), write(B), !.
rprint( I ) :- integer(I), write(I), write(/), write(1), !.
rwrite([]).
rwrite([R]) :- rprint(R).
rwrite([R, T|Rs]) :- rprint(R), write(', '), rwrite([T|Rs]).
rcompare(<, A, B) :- A < B, !.
rcompare(>, A, B) :- A > B, !.
rcompare(=, A, B) :- A =< B. |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Scala | Scala | import java.math.MathContext
import scala.collection.mutable
abstract class Frac extends Comparable[Frac] {
val num: BigInt
val denom: BigInt
def unary_-(): Frac = {
Frac(-num, denom)
}
def +(rhs: Frac): Frac = {
Frac(
num * rhs.denom + rhs.num * denom,
denom * rhs.denom
)
}
def -(rhs: Frac): Frac = {
Frac(
num * rhs.denom - rhs.num * denom,
denom * rhs.denom
)
}
def *(rhs: Frac): Frac = {
Frac(num * rhs.num, denom * rhs.denom)
}
override def compareTo(rhs: Frac): Int = {
val ln = num * rhs.denom
val rn = rhs.num * denom
ln.compare(rn)
}
def canEqual(other: Any): Boolean = other.isInstanceOf[Frac]
override def equals(other: Any): Boolean = other match {
case that: Frac =>
(that canEqual this) &&
num == that.num &&
denom == that.denom
case _ => false
}
override def hashCode(): Int = {
val state = Seq(num, denom)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
override def toString: String = {
if (denom == 1) {
return s"$num"
}
s"$num/$denom"
}
}
object Frac {
val ZERO: Frac = Frac(0)
val ONE: Frac = Frac(1)
def apply(n: BigInt): Frac = new Frac {
val num: BigInt = n
val denom: BigInt = 1
}
def apply(n: BigInt, d: BigInt): Frac = {
if (d == 0) {
throw new IllegalArgumentException("Parameter d may not be zero.")
}
var nn = n
var dd = d
if (nn == 0) {
dd = 1
} else if (dd < 0) {
nn = -nn
dd = -dd
}
val g = nn.gcd(dd)
if (g > 0) {
nn /= g
dd /= g
}
new Frac {
val num: BigInt = nn
val denom: BigInt = dd
}
}
}
object Faulhaber {
def bernoulli(n: Int): Frac = {
if (n < 0) {
throw new IllegalArgumentException("n may not be negative or zero")
}
val a = Array.fill(n + 1)(Frac.ZERO)
for (m <- 0 to n) {
a(m) = Frac(1, m + 1)
for (j <- m to 1 by -1) {
a(j - 1) = (a(j - 1) - a(j)) * Frac(j)
}
}
// returns 'first' Bernoulli number
if (n != 1) {
return a(0)
}
-a(0)
}
def binomial(n: Int, k: Int): Int = {
if (n < 0 || k < 0 || n < k) {
throw new IllegalArgumentException()
}
if (n == 0 || k == 0) {
return 1
}
val num = (k + 1 to n).product
val den = (2 to n - k).product
num / den
}
def faulhaberTriangle(p: Int): List[Frac] = {
val coeffs = mutable.MutableList.fill(p + 1)(Frac.ZERO)
val q = Frac(1, p + 1)
var sign = -1
for (j <- 0 to p) {
sign *= -1
coeffs(p - j) = q * Frac(sign) * Frac(binomial(p + 1, j)) * bernoulli(j)
}
coeffs.toList
}
def main(args: Array[String]): Unit = {
for (i <- 0 to 9) {
val coeffs = faulhaberTriangle(i)
for (coeff <- coeffs) {
print("%5s ".format(coeff))
}
println()
}
println()
}
} |
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #Sidef | Sidef | const AnyNum = require('Math::AnyNum')
const Poly = require('Math::Polynomial')
Poly.string_config(Hash(
fold_sign => true, prefix => "",
suffix => "", variable => "n"
))
func anynum(n) {
AnyNum.new(n.as_rat)
}
func faulhaber_formula(p) {
(p+1).of { |j|
Poly.monomial(p - j + 1)\
.mul_const(anynum(bernoulli(j)))\
.mul_const(anynum(binomial(p+1, j)))
}.reduce(:add).div_const(p+1)
}
for p in (^10) {
printf("%2d: %s\n", p, faulhaber_formula(p))
} |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #FunL | FunL | import util.TextTable
native scala.collection.mutable.Queue
def fibLike( init ) =
q = Queue()
for i <- init do q.enqueue( i )
def fib =
q.enqueue( sum(q) )
q.dequeue() # fib()
0 # fib()
def fibN( n ) = fibLike( [1] + [2^i | i <- 0:n-1] )
val lucas = fibLike( [2, 1] )
t = TextTable()
t.header( 'k', 'Fibonacci', 'Tribonacci', 'Tetranacci', 'Lucas' )
t.line()
for i <- 1..5
t.rightAlignment( i )
seqs = (fibN(2), fibN(3), fibN(4), lucas)
for k <- 1..10
t.row( ([k] + [seqs(i)(k) | i <- 0:4]).toIndexedSeq() )
print( t ) |
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Wren | Wren | var findCommonDir = Fn.new { |paths, sep|
var count = paths.count
if (count == 0) return ""
if (count == 1) return paths[0]
var splits = List.filled(count, null)
for (i in 0...count) splits[i] = paths[i].split(sep)
var minLen = splits[0].count
for (i in 1...count) {
var c = splits[i].count
if (c < minLen) minLen = c
}
if (minLen < 2) return ""
var common = ""
for (i in 1...minLen) {
var dir = splits[0][i]
for (j in 1...count) {
if (splits[j][i] != dir) return common
}
common = common + sep + dir
}
return common
}
var paths = [
"/home/user1/tmp/coverage/test",
"/home/user1/tmp/covert/operator",
"/home/user1/tmp/coven/members"
]
System.write("The common directory path is: ")
System.print(findCommonDir.call(paths, "/")) |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Gambas | Gambas | sRandom As New String[]
'______________________________________________________________________________________________________
Public Sub Main()
Dim siCount As Short
For siCount = 0 To 19
sRandom.Add(Rand(1, 100))
Next
Print sRandom.join(",")
NewArray
Destructive
End
'______________________________________________________________________________________________________
Public Sub NewArray() 'Select certain elements from an array into a new array in a generic way
Dim sEven As New String[]
Dim siCount As Short
For siCount = 0 To sRandom.Max
If Even(sRandom[siCount]) Then sEven.Add(sRandom[siCount])
Next
Print sEven.join(",")
End
'______________________________________________________________________________________________________
Public Sub Destructive() 'Give a second solution which filters destructively
Dim siIndex As New Short[]
Dim siCount As Short
For siCount = 0 To sRandom.Max
If Odd(sRandom[siCount]) Then siIndex.Add(siCount)
Next
For siCount = siIndex.max DownTo 0
sRandom.Extract(siIndex[siCount], 1)
Next
Print sRandom.join(",")
End |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Janet | Janet |
(loop [i :range [1 101]
:let [fizz (zero? (% i 3))
buzz (zero? (% i 5))]]
(print (cond
(and fizz buzz) "fizzbuzz"
fizz "fizz"
buzz "buzz"
i)))
|
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Objeck | Objeck | use IO;
bundle Default {
class Test {
function : Main(args : String[]) ~ Nil {
len := File->Size("input.txt");
buffer := Byte->New[len];
in := FileReader->New("input.txt");
if(in->IsOpen() <> Nil) {
in->ReadBuffer(0, len, buffer);
out := FileWriter->New("output.txt");
if(out->IsOpen() <> Nil) {
out->WriteBuffer(0, len, buffer);
out->Close();
};
in->Close();
};
}
}
} |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Rust | Rust | struct Fib<T> {
curr: T,
next: T,
}
impl<T> Fib<T> {
fn new(curr: T, next: T) -> Self {
Fib { curr: curr, next: next, }
}
}
impl Iterator for Fib<String> {
type Item = String;
fn next(&mut self) -> Option<Self::Item> {
let ret = self.curr.clone();
self.curr = self.next.clone();
self.next = format!("{}{}", ret, self.next);
Some(ret)
}
}
fn get_entropy(s: &[u8]) -> f64 {
let mut entropy = 0.0;
let mut histogram = [0.0; 256];
for i in 0..s.len() {
histogram.get_mut(s[i] as usize).map(|v| *v += 1.0);
}
for i in 0..256 {
if histogram[i] > 0.0 {
let ratio = histogram[i] / s.len() as f64;
entropy -= ratio * ratio.log2();
}
}
entropy
}
fn main() {
let f = Fib::new("1".to_string(), "0".to_string());
println!("{:10} {:10} {:10} {:60}", "N", "Length", "Entropy", "Word");
for (i, s) in f.take(37).enumerate() {
let word = if s.len() > 60 {"Too long"} else {&*s};
println!("{:10} {:10} {:.10} {:60}", i + 1, s.len(), get_entropy(&s.bytes().collect::<Vec<_>>()), word);
}
} |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Scala | Scala |
//word iterator
def fibIt = Iterator.iterate(("1","0")){case (f1,f2) => (f2,f1+f2)}.map(_._1)
//entropy calculator
def entropy(src: String): Double = {
val xs = src.groupBy(identity).map(_._2.length)
var result = 0.0
xs.foreach{c =>
val p = c.toDouble / src.length
result -= p * (Math.log(p) / Math.log(2))
}
result
}
//printing (spaces inserted to get the tabs align properly)
val it = fibIt.zipWithIndex.map(w => (w._2, w._1.length, entropy(w._1)))
println(it.take(37).map{case (n,l,e) => s"$n).\t$l \t$e"}.mkString("\n"))
|
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #ALGOL-M | ALGOL-M | INTEGER FUNCTION FIBONACCI( X ); INTEGER X;
BEGIN
INTEGER M, N, A, I;
M := 0;
N := 1;
FOR I := 2 STEP 1 UNTIL X DO
BEGIN
A := N;
N := M + N;
M := A;
END;
FIBONACCI := N;
END; |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #AutoIt | AutoIt | ;AutoIt Version: 3.2.10.0
$num = 45
MsgBox (0,"Factors", "Factors of " & $num & " are: " & factors($num))
consolewrite ("Factors of " & $num & " are: " & factors($num))
Func factors($intg)
$ls_factors=""
For $i = 1 to $intg/2
if ($intg/$i - int($intg/$i))=0 Then
$ls_factors=$ls_factors&$i &", "
EndIf
Next
Return $ls_factors&$intg
EndFunc |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #J | J | cube =: ($~ q:@#) :. ,
rou =: ^@j.@o.@(% #)@i.@-: NB. roots of unity
floop =: 4 : 'for_r. i.#$x do. (y=.{."1 y) ] x=.(+/x) ,&,:"r (-/x)*y end.'
fft =: ] floop&.cube rou@# |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Icon_and_Unicon | Icon and Unicon | procedure main(A)
p := integer(A[1]) | 929
write("M",p," has a factor ",mfactor(p))
end
procedure mfactor(p)
if isPrime(p) then {
limit := sqrt(2^p)-1
k := 1
while 2*p*k-1 < limit do {
q := 2*p*k+1
if isPrime(q) & (q%8 = (1|7)) & btest(p,q) then return q
k +:= 1
}
}
end
procedure btest(p, q)
return (2^p % q) = 1
end
procedure isPrime(n)
if n%(i := 2|3) = 0 then return n = i;
d := 5
while d*d <= n do {
if n%d = 0 then fail
d +:= 2
if n%d = 0 then fail
d +:= 4
}
return
end |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #PureBasic | PureBasic | EnableExplicit
Structure farey_struc
complex.POINT
quotient.d
EndStructure
#MAXORDER=1000
Global NewList fareylist.farey_struc()
Define v_start.i,
v_end.i,
v_step.i,
order.i,
fractions.i,
check.b,
t$
Procedure farey(order)
NewList sequence.farey_struc()
Define quotient.d,
divisor.i,
dividend.i
For divisor=1 To order
For dividend=0 To divisor
quotient.d=dividend/divisor
AddElement(sequence())
sequence()\complex\x=dividend
sequence()\complex\y=divisor
sequence()\quotient=quotient
Next
Next
SortStructuredList(sequence(),#PB_Sort_Ascending,
OffsetOf(farey_struc\quotient),
TypeOf(farey_struc\quotient))
FirstElement(sequence())
quotient=sequence()\quotient
AddElement(fareylist())
fareylist()\complex\x=sequence()\complex\x
fareylist()\complex\y=sequence()\complex\y
fareylist()\quotient=sequence()\quotient
ForEach sequence()
If quotient=sequence()\quotient : Continue : EndIf
quotient=sequence()\quotient
AddElement(fareylist())
fareylist()\complex\x=sequence()\complex\x
fareylist()\complex\y=sequence()\complex\y
fareylist()\quotient=sequence()\quotient
Next
FreeList(sequence())
EndProcedure
OpenConsole("Farey sequence [Input exit = program end]")
Repeat
Print("Input-> start end step [start>=1; end<=1000; step>=1; (start<end)] : ")
t$=Input() : If Trim(LCase(t$))="exit" : End : EndIf
v_start=Val(StringField(t$,1," "))
v_end=Val(StringField(t$,2," "))
v_step=Val(StringField(t$,3," "))
check=Bool(v_start>=1 And v_end<=#MAXORDER And v_step>=1 And v_start<v_end)
Until check=#True
PrintN(~"\n"+LSet("-",80,"-"))
order=v_start
While order<=v_end
FreeList(fareylist()) : NewList fareylist()
farey(order)
fractions=ListSize(fareylist())
PrintN("Farey sequence for order "+Str(order)+" has "+Str(fractions)+" fractions.")
If fractions<100
ForEach fareylist()
If ListIndex(fareylist()) % 7 = 0 : PrintN("") : EndIf
Print(~"\t"+
RSet(Str(fareylist()\complex\x),2," ")+"/"+
RSet(Str(fareylist()\complex\y),2," "))
Next
EndIf
PrintN(~"\n"+LSet("=",80,"="))
order+v_step
Wend
Input() |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Scheme | Scheme | ; Return the first row-count rows of Faulhaber's Triangle as a vector of vectors.
(define faulhabers-triangle
(lambda (row-count)
; Calculate and store the value of the first column of a row.
; The value is one minus the sum of all the rest of the columns.
(define calc-store-first!
(lambda (row)
(vector-set! row 0
(do ((col-inx 1 (1+ col-inx))
(col-sum 0 (+ col-sum (vector-ref row col-inx))))
((>= col-inx (vector-length row)) (- 1 col-sum))))))
; Generate the Faulhaber's Triangle one row at a time.
; The element at row i >= 0, column j >= 1 (both 0-based) is the product
; of the element at i - 1, j - 1 and the fraction ( i / ( j + 1 ) ).
; The element at column 0 is one minus the sum of all the rest of the columns.
(let ((tri (make-vector row-count)))
(do ((row-inx 0 (1+ row-inx)))
((>= row-inx row-count) tri)
(let ((row (make-vector (1+ row-inx))))
(vector-set! tri row-inx row)
(do ((col-inx 1 (1+ col-inx)))
((>= col-inx (vector-length row)))
(vector-set! row col-inx
(* (vector-ref (vector-ref tri (1- row-inx)) (1- col-inx))
(/ row-inx (1+ col-inx)))))
(calc-store-first! row))))))
; Convert elements of a vector to a string for display.
(define vector->string
(lambda (vec)
(do ((inx 0 (1+ inx))
(str "" (string-append str (format "~7@a" (vector-ref vec inx)))))
((>= inx (vector-length vec)) str))))
; Display a Faulhaber's Triangle.
(define faulhabers-triangle-display
(lambda (tri)
(do ((inx 0 (1+ inx)))
((>= inx (vector-length tri)))
(printf "~a~%" (vector->string (vector-ref tri inx))))))
; Task..
(let ((row-count 10))
(printf "The first ~a rows of Faulhaber's Triangle..~%" row-count)
(faulhabers-triangle-display (faulhabers-triangle row-count)))
(newline)
(let ((power 17)
(sum-to 1000))
(printf "Sum over k=1..~a of k^~a using Faulhaber's Triangle..~%" sum-to power)
(let* ((tri (faulhabers-triangle (1+ power)))
(coefs (vector-ref tri power)))
(printf "~a~%" (do ((inx 0 (1+ inx))
(term-expt sum-to (* term-expt sum-to))
(sum 0 (+ sum (* (vector-ref coefs inx) term-expt))))
((>= inx (vector-length coefs)) sum))))) |
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #Visual_Basic_.NET | Visual Basic .NET | Module Module1
Function Gcd(a As Long, b As Long)
If b = 0 Then
Return a
End If
Return Gcd(b, a Mod b)
End Function
Class Frac
ReadOnly num As Long
ReadOnly denom As Long
Public Shared ReadOnly ZERO As New Frac(0, 1)
Public Shared ReadOnly ONE As New Frac(1, 1)
Public Sub New(n As Long, d As Long)
If d = 0 Then Throw New ArgumentException("d must not be zero")
Dim nn = n
Dim dd = d
If nn = 0 Then
dd = 1
ElseIf dd < 0 Then
nn = -nn
dd = -dd
End If
Dim g = Math.Abs(Gcd(nn, dd))
If g > 1 Then
nn /= g
dd /= g
End If
num = nn
denom = dd
End Sub
Public Shared Operator -(self As Frac) As Frac
Return New Frac(-self.num, self.denom)
End Operator
Public Shared Operator +(lhs As Frac, rhs As Frac) As Frac
Return New Frac(lhs.num * rhs.denom + lhs.denom * rhs.num, rhs.denom * lhs.denom)
End Operator
Public Shared Operator -(lhs As Frac, rhs As Frac) As Frac
Return lhs + -rhs
End Operator
Public Shared Operator *(lhs As Frac, rhs As Frac) As Frac
Return New Frac(lhs.num * rhs.num, lhs.denom * rhs.denom)
End Operator
Public Shared Operator <(lhs As Frac, rhs As Frac) As Boolean
Dim x = lhs.num / lhs.denom
Dim y = rhs.num / rhs.denom
Return x < y
End Operator
Public Shared Operator >(lhs As Frac, rhs As Frac) As Boolean
Dim x = lhs.num / lhs.denom
Dim y = rhs.num / rhs.denom
Return x > y
End Operator
Public Shared Operator =(lhs As Frac, rhs As Frac) As Boolean
Return lhs.num = rhs.num AndAlso lhs.denom = rhs.denom
End Operator
Public Shared Operator <>(lhs As Frac, rhs As Frac) As Boolean
Return lhs.num <> rhs.num OrElse lhs.denom <> rhs.denom
End Operator
Public Overloads Function Equals(obj As Object) As Boolean
Dim frac = CType(obj, Frac)
Return Not IsNothing(frac) AndAlso num = frac.num AndAlso denom = frac.denom
End Function
Public Overloads Function GetHashCode() As Integer
Dim hashCode = 1317992671
hashCode = hashCode * -1521134295 + num.GetHashCode()
hashCode = hashCode * -1521134295 + denom.GetHashCode()
Return hashCode
End Function
Public Overloads Function ToString() As String
If denom = 1 Then Return num.ToString()
Return String.Format("{0}/{1}", num, denom)
End Function
End Class
Function Bernoulli(n As Integer) As Frac
If n < 0 Then Throw New ArgumentException("n may not be negative or zero")
Dim a(n + 1) As Frac
For m = 0 To n
a(m) = New Frac(1, m + 1)
For j = m To 1 Step -1
a(j - 1) = (a(j - 1) - a(j)) * New Frac(j, 1)
Next
Next
'returns the first Bernoulli number
If n <> 1 Then Return a(0)
Return -a(0)
End Function
Function Binomial(n As Integer, k As Integer) As Integer
If n < 0 OrElse k < 0 OrElse n < k Then
Throw New ArgumentException()
End If
If n = 0 OrElse k = 0 Then
Return 1
End If
Dim num = 1
For i = k + 1 To n
num *= i
Next
Dim denom = 1
For i = 2 To n - k
denom *= i
Next
Return num / denom
End Function
Sub Faulhaber(p As Integer)
Console.Write("{0} : ", p)
Dim q As New Frac(1, p + 1)
Dim sign = -1
For j = 0 To p
sign *= -1
Dim coeff = q * New Frac(sign, 1) * New Frac(Binomial(p + 1, j), 1) * Bernoulli(j)
If Frac.ZERO = coeff Then Continue For
If j = 0 Then
If Frac.ONE <> coeff Then
If -Frac.ONE = coeff Then
Console.Write("-")
Else
Console.Write(coeff.ToString())
End If
End If
Else
If Frac.ONE = coeff Then
Console.Write(" + ")
ElseIf -Frac.ONE = coeff Then
Console.Write(" - ")
ElseIf Frac.ZERO < coeff Then
Console.Write(" + {0}", coeff.ToString())
Else
Console.Write(" - {0}", (-coeff).ToString())
End If
End If
Dim pwr = p + 1 - j
If pwr > 1 Then
Console.Write("n^{0}", pwr)
Else
Console.Write("n")
End If
Next
Console.WriteLine()
End Sub
Sub Main()
For i = 0 To 9
Faulhaber(i)
Next
End Sub
End Module |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #F.C5.8Drmul.C3.A6 | Fōrmulæ | package main
import "fmt"
func g(i []int, c chan<- int) {
var sum int
b := append([]int(nil), i...) // make a copy
for _, t := range b {
c <- t
sum += t
}
for {
for j, t := range b {
c <- sum
b[j], sum = sum, sum+sum-t
}
}
}
func main() {
for _, s := range [...]struct {
seq string
i []int
}{
{"Fibonacci", []int{1, 1}},
{"Tribonacci", []int{1, 1, 2}},
{"Tetranacci", []int{1, 1, 2, 4}},
{"Lucas", []int{2, 1}},
} {
fmt.Printf("%10s:", s.seq)
c := make(chan int)
// Note/warning: these goroutines are leaked.
go g(s.i, c)
for j := 0; j < 10; j++ {
fmt.Print(" ", <-c)
}
fmt.Println()
}
} |
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Yabasic | Yabasic | x$ = "/home/user1/tmp/coverage/test"
y$ = "/home/user1/tmp/covert/operator"
z$ = "/home/user1/tmp/coven/members"
a = len(x$)
if a > len(y$) a = len(y$)
if a > len(z$) a = len(z$)
for i = 1 to a
if mid$(x$, i, 1) <> mid$(y$, i, 1) break
next i
a = i - 1
for i = 1 to a
if mid$(x$, i, 1) <> mid$(z$, i, 1) break
next i
a = i - 1
if mid$(x$, i, 1) <> "/" then
for i = a to 1 step -1
if "/" = mid$(x$, i, 1) break
next i
fi
REM Task description says no trailing slash, so...
a = i - 1
print "Common path is '", left$(x$, a), "'" |
http://rosettacode.org/wiki/Find_common_directory_path | Find common directory path | Create a routine that, given a set of strings representing directory paths and a single character directory separator, will return a string representing that part of the directory tree that is common to all the directories.
Test your routine using the forward slash '/' character as the directory separator and the following three strings as input paths:
'/home/user1/tmp/coverage/test'
'/home/user1/tmp/covert/operator'
'/home/user1/tmp/coven/members'
Note: The resultant path should be the valid directory '/home/user1/tmp' and not the longest common string '/home/user1/tmp/cove'.
If your language has a routine that performs this function (even if it does not have a changeable separator character), then mention it as part of the task.
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #zkl | zkl | dirs:=T("/home/user1/tmp/coverage/test", "/home/user1/tmp/covert/operator",
"/home/user1/tmp/coven/members");
n:=Utils.zipWith('==,dirs.xplode()).find(False); // character pos which differs
n=dirs[0][0,n].rfind("/"); // find last "/"
dirs[0][0,n]; |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #GAP | GAP | # Built-in
Filtered([1 .. 100], IsPrime);
# [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 ]
Filtered([1 .. 10], IsEvenInt);
# [ 2, 4, 6, 8, 10 ]
Filtered([1 .. 10], IsOddInt);
# [ 1, 3, 5, 7, 9 ] |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Java | Java |
public class FizzBuzz {
public static void main(String[] args) {
for (int number = 1; number <= 100; number++) {
if (number % 15 == 0) {
System.out.println("FizzBuzz");
} else if (number % 3 == 0) {
System.out.println("Fizz");
} else if (number % 5 == 0) {
System.out.println("Buzz");
} else {
System.out.println(number);
}
}
}
}
|
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Object_Pascal | Object Pascal | uses
classes;
begin
with TFileStream.Create('input.txt', fmOpenRead) do
try
SaveToFile('output.txt');
finally
Free;
end;
end; |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Objective-C | Objective-C | [[NSFileManager defaultManager] copyItemAtPath:@"input.txt" toPath:@"output.txt" error:NULL]; |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Scheme | Scheme |
(import (scheme base)
(scheme inexact)
(scheme write))
(define *words* (make-vector 38 ""))
(define (create-words)
(vector-set! *words* 1 "1")
(vector-set! *words* 2 "0")
(do ((i 3 (+ 1 i)))
((= i (vector-length *words*)) )
(vector-set! *words* i (string-append (vector-ref *words* (- i 1))
(vector-ref *words* (- i 2))))))
;; in this context, word only contains 1 or 0
(define (entropy word)
(let* ((N (string-length word))
(num-ones 0)
(num-zeros 0))
(string-for-each (lambda (c)
(if (char=? c #\1)
(set! num-ones (+ 1 num-ones))
(set! num-zeros (+ 1 num-zeros))))
word)
(if (or (zero? num-ones) (zero? num-zeros))
0
(- 0
(* (/ num-ones N) (log (/ num-ones N) 2))
(* (/ num-zeros N) (log (/ num-zeros N) 2))))))
;; display values
(create-words)
(do ((i 1 (+ 1 i)))
((= i (vector-length *words*)) )
(display (string-append (number->string i)
" "
(number->string
(string-length (vector-ref *words* i)))
" "
(number->string
(entropy (vector-ref *words* i)))
"\n")))
|
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Alore | Alore | def fib(n as Int) as Int
if n < 2
return 1
end
return fib(n-1) + fib(n-2)
end |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #AWK | AWK |
# syntax: GAWK -f FACTORS_OF_AN_INTEGER.AWK
BEGIN {
print("enter a number or C/R to exit")
}
{ if ($0 == "") { exit(0) }
if ($0 !~ /^[0-9]+$/) {
printf("invalid: %s\n",$0)
next
}
n = $0
printf("factors of %s:",n)
for (i=1; i<=n; i++) {
if (n % i == 0) {
printf(" %d",i)
}
}
printf("\n")
}
|
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #Java | Java | import static java.lang.Math.*;
public class FastFourierTransform {
public static int bitReverse(int n, int bits) {
int reversedN = n;
int count = bits - 1;
n >>= 1;
while (n > 0) {
reversedN = (reversedN << 1) | (n & 1);
count--;
n >>= 1;
}
return ((reversedN << count) & ((1 << bits) - 1));
}
static void fft(Complex[] buffer) {
int bits = (int) (log(buffer.length) / log(2));
for (int j = 1; j < buffer.length / 2; j++) {
int swapPos = bitReverse(j, bits);
Complex temp = buffer[j];
buffer[j] = buffer[swapPos];
buffer[swapPos] = temp;
}
for (int N = 2; N <= buffer.length; N <<= 1) {
for (int i = 0; i < buffer.length; i += N) {
for (int k = 0; k < N / 2; k++) {
int evenIndex = i + k;
int oddIndex = i + k + (N / 2);
Complex even = buffer[evenIndex];
Complex odd = buffer[oddIndex];
double term = (-2 * PI * k) / (double) N;
Complex exp = (new Complex(cos(term), sin(term)).mult(odd));
buffer[evenIndex] = even.add(exp);
buffer[oddIndex] = even.sub(exp);
}
}
}
}
public static void main(String[] args) {
double[] input = {1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0};
Complex[] cinput = new Complex[input.length];
for (int i = 0; i < input.length; i++)
cinput[i] = new Complex(input[i], 0.0);
fft(cinput);
System.out.println("Results:");
for (Complex c : cinput) {
System.out.println(c);
}
}
}
class Complex {
public final double re;
public final double im;
public Complex() {
this(0, 0);
}
public Complex(double r, double i) {
re = r;
im = i;
}
public Complex add(Complex b) {
return new Complex(this.re + b.re, this.im + b.im);
}
public Complex sub(Complex b) {
return new Complex(this.re - b.re, this.im - b.im);
}
public Complex mult(Complex b) {
return new Complex(this.re * b.re - this.im * b.im,
this.re * b.im + this.im * b.re);
}
@Override
public String toString() {
return String.format("(%f,%f)", re, im);
}
} |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #J | J | trialfac=: 3 : 0
qs=. (#~8&(1=|+.7=|))(#~1&p:)1+(*(1x+i.@<:@<.)&.-:)y
qs#~1=qs&|@(2&^@[**:@])/ 1,~ |.#: y
) |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Java | Java |
import java.math.BigInteger;
class MersenneFactorCheck
{
private final static BigInteger TWO = BigInteger.valueOf(2);
public static boolean isPrime(long n)
{
if (n == 2)
return true;
if ((n < 2) || ((n & 1) == 0))
return false;
long maxFactor = (long)Math.sqrt((double)n);
for (long possibleFactor = 3; possibleFactor <= maxFactor; possibleFactor += 2)
if ((n % possibleFactor) == 0)
return false;
return true;
}
public static BigInteger findFactorMersenneNumber(int primeP)
{
if (primeP <= 0)
throw new IllegalArgumentException();
BigInteger bigP = BigInteger.valueOf(primeP);
BigInteger m = BigInteger.ONE.shiftLeft(primeP).subtract(BigInteger.ONE);
// There are more complicated ways of getting closer to sqrt(), but not that important here, so go with simple
BigInteger maxFactor = BigInteger.ONE.shiftLeft((primeP + 1) >>> 1);
BigInteger twoP = BigInteger.valueOf(primeP << 1);
BigInteger possibleFactor = BigInteger.ONE;
int possibleFactorBits12 = 0;
int twoPBits12 = primeP & 3;
while ((possibleFactor = possibleFactor.add(twoP)).compareTo(maxFactor) <= 0)
{
possibleFactorBits12 = (possibleFactorBits12 + twoPBits12) & 3;
// "Furthermore, q must be 1 or 7 mod 8". We know it's odd due to the +1 done above, so bit 0 is set. Therefore, we only care about bits 1 and 2 equaling 00 or 11
if ((possibleFactorBits12 == 0) || (possibleFactorBits12 == 3))
if (TWO.modPow(bigP, possibleFactor).equals(BigInteger.ONE))
return possibleFactor;
}
return null;
}
public static void checkMersenneNumber(int p)
{
if (!isPrime(p))
{
System.out.println("M" + p + " is not prime");
return;
}
BigInteger factor = findFactorMersenneNumber(p);
if (factor == null)
System.out.println("M" + p + " is prime");
else
System.out.println("M" + p + " is not prime, has factor " + factor);
return;
}
public static void main(String[] args)
{
for (int p = 1; p <= 50; p++)
checkMersenneNumber(p);
checkMersenneNumber(929);
return;
}
}
|
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Python | Python | from fractions import Fraction
class Fr(Fraction):
def __repr__(self):
return '(%s/%s)' % (self.numerator, self.denominator)
def farey(n, length=False):
if not length:
return [Fr(0, 1)] + sorted({Fr(m, k) for k in range(1, n+1) for m in range(1, k+1)})
else:
#return 1 + len({Fr(m, k) for k in range(1, n+1) for m in range(1, k+1)})
return (n*(n+3))//2 - sum(farey(n//k, True) for k in range(2, n+1))
if __name__ == '__main__':
print('Farey sequence for order 1 through 11 (inclusive):')
for n in range(1, 12):
print(farey(n))
print('Number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds:')
print([farey(i, length=True) for i in range(100, 1001, 100)]) |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Sidef | Sidef | func faulhaber_triangle(p) {
{ binomial(p, _) * bernoulli(_) / p }.map(p ^.. 0)
}
{ |p|
say faulhaber_triangle(p).map{ '%6s' % .as_rat }.join
} << 1..10
const p = 17
const n = 1000
say ''
say faulhaber_triangle(p+1).map_kv {|k,v| v * n**(k+1) }.sum |
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #Wren | Wren | import "/math" for Int
import "/rat" for Rat
var bernoulli = Fn.new { |n|
if (n < 0) Fiber.abort("Argument must be non-negative")
var a = List.filled(n+1, null)
for (m in 0..n) {
a[m] = Rat.new(1, m+1)
var j = m
while (j >= 1) {
a[j-1] = (a[j-1] - a[j]) * Rat.new(j, 1)
j = j - 1
}
}
return (n != 1) ? a[0] : -a[0] // 'first' Bernoulli number
}
var binomial = Fn.new { |n, k|
if (n < 0 || k < 0) Fiber.abort("Arguments must be non-negative integers")
if (n < k) Fiber.abort("The second argument cannot be more than the first.")
if (n == k) return 1
var prod = 1
var i = n - k + 1
while (i <= n) {
prod = prod * i
i = i + 1
}
return prod / Int.factorial(k)
}
var faulhaber = Fn.new { |p|
System.write("%(p) : ")
var q = Rat.new(1, p+1)
var sign = -1
for (j in 0..p) {
sign = sign * -1
var b = Rat.new(binomial.call(p+1, j), 1)
var coeff = q * Rat.new(sign, 1) * b * bernoulli.call(j)
if (coeff != Rat.zero) {
if (j == 0) {
System.write((coeff == Rat.one) ? "" : (coeff == Rat.minusOne) ? "-" : "%(coeff)")
} else {
System.write((coeff == Rat.one) ? " + " : (coeff == Rat.minusOne) ? " - " :
(coeff > Rat.zero) ? " + %(coeff)" : " - %(-coeff)")
}
var pwr = p + 1 - j
System.write((pwr > 1) ? "n^%(pwr)" : "n")
}
}
System.print()
}
for (i in 0..9) faulhaber.call(i) |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Go | Go | package main
import "fmt"
func g(i []int, c chan<- int) {
var sum int
b := append([]int(nil), i...) // make a copy
for _, t := range b {
c <- t
sum += t
}
for {
for j, t := range b {
c <- sum
b[j], sum = sum, sum+sum-t
}
}
}
func main() {
for _, s := range [...]struct {
seq string
i []int
}{
{"Fibonacci", []int{1, 1}},
{"Tribonacci", []int{1, 1, 2}},
{"Tetranacci", []int{1, 1, 2, 4}},
{"Lucas", []int{2, 1}},
} {
fmt.Printf("%10s:", s.seq)
c := make(chan int)
// Note/warning: these goroutines are leaked.
go g(s.i, c)
for j := 0; j < 10; j++ {
fmt.Print(" ", <-c)
}
fmt.Println()
}
} |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Go | Go | package main
import (
"fmt"
"math/rand"
)
func main() {
a := rand.Perm(20)
fmt.Println(a) // show array to filter
fmt.Println(even(a)) // show result of non-destructive filter
fmt.Println(a) // show that original array is unchanged
reduceToEven(&a) // destructive filter
fmt.Println(a) // show that a is now changed
// a is not only changed, it is changed in place. length and capacity
// show that it still has its original allocated capacity but has now
// been reduced in length.
fmt.Println("a len:", len(a), "cap:", cap(a))
}
func even(a []int) (r []int) {
for _, e := range a {
if e%2 == 0 {
r = append(r, e)
}
}
return
}
func reduceToEven(pa *[]int) {
a := *pa
var last int
for _, e := range a {
if e%2 == 0 {
a[last] = e
last++
}
}
*pa = a[:last]
} |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #JavaScript | JavaScript | var fizzBuzz = function () {
var i, output;
for (i = 1; i < 101; i += 1) {
output = '';
if (!(i % 3)) { output += 'Fizz'; }
if (!(i % 5)) { output += 'Buzz'; }
console.log(output || i);//empty string is false, so we short-circuit
}
}; |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #OCaml | OCaml | let () =
let ic = open_in "input.txt" in
let oc = open_out "output.txt" in
try
while true do
let s = input_line ic in
output_string oc s;
output_char oc '\n';
done
with End_of_file ->
close_in ic;
close_out oc;
;; |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Octave | Octave |
in = fopen("input.txt", "r", "native");
out = fopen("output.txt", "w","native");
if (in == -1)
disp("Error opening input.txt for reading.");
else
if (out == -1)
disp("Error opening output.txt for writing.");
else
while (1)
[val,count]=fread(in,1,"uchar",0,"native");
if (count > 0)
count=fwrite(out,val,"uchar",0,"native");
if (count == 0)
disp("Error writing to output.txt.");
end
else
break;
end
endwhile
end
end
if (in != -1)
fclose(in);
end
if (out != -1)
fclose(out);
end
|
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Scilab | Scilab | exec('.\entropy.sci',0);
function word=fiboword(n)
word_1 = '1'; word_2 = '0';
select n
case 1
word = word_1
case 2
word = word_2;
case 3
word = strcat([word_2 word_1]);
else
word = strcat([fiboword(n-1) fiboword(n-2)])
end
endfunction
final_length = 37;
N=[1:final_length]';
char_length = zeros(N);
entropies = zeros(N);
tic();
for i=1:final_length
word = fiboword(i);
char_length(i) = length(word);
entropies(i) = entropy(word);
end
time = toc();
disp('EXECUTION TIME: '+string(time)+'s.');
disp(['N', 'LENGTH', 'ENTROPY'; string([N char_length entropies])]); |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
include "float.s7i";
include "math.s7i";
const func float: entropy (in string: stri) is func
result
var float: entropy is 0.0;
local
var hash [char] integer: count is (hash [char] integer).value;
var char: ch is ' ';
var float: p is 0.0;
begin
for ch range stri do
if ch in count then
incr(count[ch]);
else
count @:= [ch] 1;
end if;
end for;
for key ch range count do
p := flt(count[ch]) / flt(length(stri));
entropy -:= p * log(p) / log(2.0);
end for;
end func ;
const func string: fibWord (in integer: number) is func
result
var string: fibWord is "1";
local
var integer: i is 0;
var string: a is "1";
var string: c is "";
begin
if number >= 2 then
fibWord := "0";
for i range 3 to number do
c := a;
a := fibWord;
fibWord &:= c;
end for;
end if;
end func;
const proc: main is func
local
var integer: index is 0;
var string: fibWord is "";
begin
for index range 1 to 37 do
fibWord := fibWord(index);
writeln(index lpad 2 <& length(fibWord) lpad 10 <& " " <& entropy(fibWord) digits 15);
end for;
end func; |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Amazing_Hopper | Amazing Hopper |
#include <hbasic.h>
#define TERM1 1.61803398874989
#define TERM2 -0.61803398874989
#context get Fibonacci number with analitic mode
GetArgs(n)
get Inv of (M_SQRT5), Mul by( Pow (TERM 1, n), Minus( Pow(TERM 2, n) ) );
then Return\\
#proto fibonacci_recursive(__X__)
#synon _fibonacci_recursive getFibonaccinumberwithrecursivemodeof
#proto fibonacci_iterative(__X__)
#synon _fibonacci_iterative getFibonaccinumberwithiterativemodeof
Begin
Option Stack 1024
get Arg Number(2, n), and Take( n );
then, get Fibonacci number with analitic mode, and Print It with a Newl.
secondly, get Fibonacci number with recursive mode of(n), and Print It with a Newl.
finally, get Fibonacci number with iterative mode of (n), and Print It with a Newl.
End
Subrutines
fibonacci_recursive(n)
Iif ( var(n) Is Le? (2), 1 , \
get Fibonacci number with recursive mode of( var(n) Minus (1));\
get Fibonacci number with recursive mode of( var(n) Minus (2)); and Add It )
Return
fibonacci_iterative(n)
A=0
B=1
For Up( I:=2, n, 1 )
C=B
Let ( B: = var(A) Plus (B) )
A=C
Next
Return(B)
|
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #BASIC | BASIC | DECLARE SUB factor (what AS INTEGER)
REDIM SHARED factors(0) AS INTEGER
DIM i AS INTEGER, L AS INTEGER
INPUT "Gimme a number"; i
factor i
PRINT factors(0);
FOR L = 1 TO UBOUND(factors)
PRINT ","; factors(L);
NEXT
PRINT
SUB factor (what AS INTEGER)
DIM tmpint1 AS INTEGER
DIM L0 AS INTEGER, L1 AS INTEGER
REDIM tmp(0) AS INTEGER
REDIM factors(0) AS INTEGER
factors(0) = 1
FOR L0 = 2 TO what
IF (0 = (what MOD L0)) THEN
'all this REDIMing and copying can be replaced with:
'REDIM PRESERVE factors(UBOUND(factors)+1)
'in languages that support the PRESERVE keyword
REDIM tmp(UBOUND(factors)) AS INTEGER
FOR L1 = 0 TO UBOUND(factors)
tmp(L1) = factors(L1)
NEXT
REDIM factors(UBOUND(factors) + 1)
FOR L1 = 0 TO UBOUND(factors) - 1
factors(L1) = tmp(L1)
NEXT
factors(UBOUND(factors)) = L0
END IF
NEXT
END SUB |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #JavaScript | JavaScript | /*
complex fast fourier transform and inverse from
http://rosettacode.org/wiki/Fast_Fourier_transform#C.2B.2B
*/
function icfft(amplitudes)
{
var N = amplitudes.length;
var iN = 1 / N;
//conjugate if imaginary part is not 0
for(var i = 0 ; i < N; ++i)
if(amplitudes[i] instanceof Complex)
amplitudes[i].im = -amplitudes[i].im;
//apply fourier transform
amplitudes = cfft(amplitudes)
for(var i = 0 ; i < N; ++i)
{
//conjugate again
amplitudes[i].im = -amplitudes[i].im;
//scale
amplitudes[i].re *= iN;
amplitudes[i].im *= iN;
}
return amplitudes;
}
function cfft(amplitudes)
{
var N = amplitudes.length;
if( N <= 1 )
return amplitudes;
var hN = N / 2;
var even = [];
var odd = [];
even.length = hN;
odd.length = hN;
for(var i = 0; i < hN; ++i)
{
even[i] = amplitudes[i*2];
odd[i] = amplitudes[i*2+1];
}
even = cfft(even);
odd = cfft(odd);
var a = -2*Math.PI;
for(var k = 0; k < hN; ++k)
{
if(!(even[k] instanceof Complex))
even[k] = new Complex(even[k], 0);
if(!(odd[k] instanceof Complex))
odd[k] = new Complex(odd[k], 0);
var p = k/N;
var t = new Complex(0, a * p);
t.cexp(t).mul(odd[k], t);
amplitudes[k] = even[k].add(t, odd[k]);
amplitudes[k + hN] = even[k].sub(t, even[k]);
}
return amplitudes;
}
//test code
//console.log( cfft([1,1,1,1,0,0,0,0]) );
//console.log( icfft(cfft([1,1,1,1,0,0,0,0])) ); |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #JavaScript | JavaScript | function mersenne_factor(p){
var limit, k, q
limit = Math.sqrt(Math.pow(2,p) - 1)
k = 1
while ((2*k*p - 1) < limit){
q = 2*k*p + 1
if (isPrime(q) && (q % 8 == 1 || q % 8 == 7) && trial_factor(2,p,q)){
return q // q is a factor of 2**p-1
}
k++
}
return null
}
function isPrime(value){
for (var i=2; i < value; i++){
if (value % i == 0){
return false
}
if (value % i != 0){
return true;
}
}
}
function trial_factor(base, exp, mod){
var square, bits
square = 1
bits = exp.toString(2).split('')
for (var i=0,ln=bits.length; i<ln; i++){
square = Math.pow(square, 2) * (bits[i] == 1 ? base : 1) % mod
}
return (square == 1)
}
function check_mersenne(p){
var f, result
console.log("M"+p+" = 2^"+p+"-1 is ")
f = mersenne_factor(p)
console.log(f == null ? "prime" : "composite with factor "+f)
} |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Quackery | Quackery | [ $ "bigrat.qky" loadfile ] now!
[ rot + dip + reduce ] is mediant ( n/d n/d --> n/d )
[ 1+ temp put [] swap
dup size 1 - times
[ dup i^ peek
rot over nested join
unrot over i^ 1+ peek
join do mediant
dup temp share < iff
[ join nested
rot swap join
swap ]
else 2drop ]
drop
' [ [ 1 1 ] ] join
temp release ] is nextfarey ( fy n --> fy )
[ witheach
[ unpack vulgar$
echo$ sp ] ] is echofarey ( fy --> )
[ 0 swap dup times
[ i over gcd
1 = rot + swap ]
drop ] is totient ( n --> n )
[ 0 swap times
[ i 1+ totient + ] ] is totientsum ( n --> n )
[ totientsum 1+ ] is fareylength ( n --> n )
say "First eleven Farey series:" cr
' [ [ 0 1 ] [ 1 1 ] ]
10 times
[ dup echofarey cr
i^ 2 + nextfarey ]
echofarey cr
cr
say "Length of Farey series 100, 200 ... 1000: "
[] 10 times
[ i^ 1+ 100 *
fareylength join ]
echo |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #R | R |
farey <- function(n, length_only = FALSE) {
a <- 0
b <- 1
c <- 1
d <- n
if (!length_only)
cat(a, "/", b, sep = "")
count <- 1
while (c <= n) {
count <- count + 1
k <- ((n + b) %/% d)
next_c <- k * c - a
next_d <- k * d - b
a <- c
b <- d
c <- next_c
d <- next_d
if (!length_only)
cat(" ", a, "/", b, sep = "")
}
if (length_only)
cat(count, "items")
cat("\n")
}
for (i in 1:11) {
cat(i, ": ", sep = "")
farey(i)
}
for (i in 100 * 1:10) {
cat(i, ": ", sep = "")
farey(i, length_only = TRUE)
}
|
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Visual_Basic_.NET | Visual Basic .NET | Module Module1
Class Frac
Private ReadOnly num As Long
Private ReadOnly denom As Long
Public Shared ReadOnly ZERO = New Frac(0, 1)
Public Shared ReadOnly ONE = New Frac(1, 1)
Public Sub New(n As Long, d As Long)
If d = 0 Then
Throw New ArgumentException("d must not be zero")
End If
Dim nn = n
Dim dd = d
If nn = 0 Then
dd = 1
ElseIf dd < 0 Then
nn = -nn
dd = -dd
End If
Dim g = Math.Abs(Gcd(nn, dd))
If g > 1 Then
nn /= g
dd /= g
End If
num = nn
denom = dd
End Sub
Private Shared Function Gcd(a As Long, b As Long) As Long
If b = 0 Then
Return a
Else
Return Gcd(b, a Mod b)
End If
End Function
Public Shared Operator -(self As Frac) As Frac
Return New Frac(-self.num, self.denom)
End Operator
Public Shared Operator +(lhs As Frac, rhs As Frac) As Frac
Return New Frac(lhs.num * rhs.denom + lhs.denom * rhs.num, rhs.denom * lhs.denom)
End Operator
Public Shared Operator -(lhs As Frac, rhs As Frac) As Frac
Return lhs + -rhs
End Operator
Public Shared Operator *(lhs As Frac, rhs As Frac) As Frac
Return New Frac(lhs.num * rhs.num, lhs.denom * rhs.denom)
End Operator
Public Shared Operator <(lhs As Frac, rhs As Frac) As Boolean
Dim x = lhs.num / lhs.denom
Dim y = rhs.num / rhs.denom
Return x < y
End Operator
Public Shared Operator >(lhs As Frac, rhs As Frac) As Boolean
Dim x = lhs.num / lhs.denom
Dim y = rhs.num / rhs.denom
Return x > y
End Operator
Public Shared Operator =(lhs As Frac, rhs As Frac) As Boolean
Return lhs.num = rhs.num AndAlso lhs.denom = rhs.denom
End Operator
Public Shared Operator <>(lhs As Frac, rhs As Frac) As Boolean
Return lhs.num <> rhs.num OrElse lhs.denom <> rhs.denom
End Operator
Public Overrides Function ToString() As String
If denom = 1 Then
Return num.ToString
Else
Return String.Format("{0}/{1}", num, denom)
End If
End Function
Public Overrides Function Equals(obj As Object) As Boolean
Dim frac = CType(obj, Frac)
Return Not IsNothing(frac) AndAlso num = frac.num AndAlso denom = frac.denom
End Function
End Class
Function Bernoulli(n As Integer) As Frac
If n < 0 Then
Throw New ArgumentException("n may not be negative or zero")
End If
Dim a(n + 1) As Frac
For m = 0 To n
a(m) = New Frac(1, m + 1)
For j = m To 1 Step -1
a(j - 1) = (a(j - 1) - a(j)) * New Frac(j, 1)
Next
Next
' returns 'first' Bernoulli number
If n <> 1 Then
Return a(0)
Else
Return -a(0)
End If
End Function
Function Binomial(n As Integer, k As Integer) As Integer
If n < 0 OrElse k < 0 OrElse n < k Then
Throw New ArgumentException()
End If
If n = 0 OrElse k = 0 Then
Return 1
End If
Dim num = 1
For i = k + 1 To n
num *= i
Next
Dim denom = 1
For i = 2 To n - k
denom *= i
Next
Return num \ denom
End Function
Function FaulhaberTriangle(p As Integer) As Frac()
Dim coeffs(p + 1) As Frac
For i = 1 To p + 1
coeffs(i - 1) = Frac.ZERO
Next
Dim q As New Frac(1, p + 1)
Dim sign = -1
For j = 0 To p
sign *= -1
coeffs(p - j) = q * New Frac(sign, 1) * New Frac(Binomial(p + 1, j), 1) * Bernoulli(j)
Next
Return coeffs
End Function
Sub Main()
For i = 1 To 10
Dim coeffs = FaulhaberTriangle(i - 1)
For Each coeff In coeffs
Console.Write("{0,5} ", coeff)
Next
Console.WriteLine()
Next
End Sub
End Module |
http://rosettacode.org/wiki/Faulhaber%27s_formula | Faulhaber's formula | In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
Task
Generate the first 10 closed-form expressions, starting with p = 0.
Related tasks
Bernoulli numbers.
evaluate binomial coefficients.
See also
The Wikipedia entry: Faulhaber's formula.
The Wikipedia entry: Bernoulli numbers.
The Wikipedia entry: binomial coefficients.
| #zkl | zkl | var [const] BN=Import("zklBigNum"); // libGMP (GNU MP Bignum Library)
fcn faulhaberFormula(p){ //-->(Rational,Rational...)
[p..0,-1].pump(List(),'wrap(k){ B(k)*BN(p+1).binomial(k) })
.apply('*(Rational(1,p+1)))
} |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Groovy | Groovy | def fib = { List seed, int k=10 ->
assert seed : "The seed list must be non-null and non-empty"
assert seed.every { it instanceof Number } : "Every member of the seed must be a number"
def n = seed.size()
assert n > 1 : "The seed must contain at least two elements"
List result = [] + seed
if (k < n) {
result[0..k]
} else {
(n..k).inject(result) { res, kk ->
res << res[-n..-1].sum()
}
}
} |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Groovy | Groovy | def evens = [1, 2, 3, 4, 5].findAll{it % 2 == 0} |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Joy | Joy | DEFINE one == [[[dup 15 rem 0 =] "FizzBuzz"] [[dup 3 rem 0 =] "Fizz"] [[dup 5 rem 0 =] "Buzz"] [dup]] cond.
1 [100 <=] [dup one put succ] while. |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Oforth | Oforth | : fcopy(in, out)
| f g |
File newMode(in, File.BINARY) dup open(File.READ) ->f
File newMode(out, File.BINARY) dup open(File.WRITE) ->g
while(f >> dup notNull) [ g addChar ] drop
f close g close ; |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #OpenEdge.2FProgress | OpenEdge/Progress | COPY-LOB FROM FILE "input.txt" TO FILE "output.txt". |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Sidef | Sidef | func entropy(s) {
[0] + (s.chars.freq.values »/» s.len) -> reduce { |a,b|
a - b*b.log2
}
}
var n_max = 37
var words = ['1', '0']
{
words.append(words[-1] + words[-2])
} * (n_max - words.len)
say ('%3s %10s %15s %s' % <N Length Entropy Fibword>...)
for i in ^words {
var word = words[i]
say ('%3i %10i %15.12f %s' % (i+1,
word.len,
entropy(word),
word.len<30 ? word : '<too long>'))
} |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Swift | Swift | import Foundation
struct Fib: Sequence, IteratorProtocol {
private var cur: String
private var nex: String
init(cur: String, nex: String) {
self.cur = cur
self.nex = nex
}
mutating func next() -> String? {
let ret = cur
cur = nex
nex = "\(ret)\(nex)"
return ret
}
}
func getEntropy(_ s: [Int]) -> Double {
var entropy = 0.0
var hist = Array(repeating: 0.0, count: 256)
for i in 0..<s.count {
hist[s[i]] += 1
}
for i in 0..<256 where hist[i] > 0 {
let rat = hist[i] / Double(s.count)
entropy -= rat * log2(rat)
}
return entropy
}
for (i, str) in Fib(cur: "1", nex: "0").prefix(37).enumerated() {
let ent = getEntropy(str.map({ Int($0.asciiValue!) }))
print("i: \(i) len: \(str.count) entropy: \(ent)")
} |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #AntLang | AntLang | /Sequence
fib:{<0;1> {x,<x[-1]+x[-2]>}/ range[x]}
/nth
fibn:{fib[x][x]} |
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #Batch_File | Batch File | @echo off
set res=Factors of %1:
for /L %%i in (1,1,%1) do call :fac %1 %%i
echo %res%
goto :eof
:fac
set /a test = %1 %% %2
if %test% equ 0 set res=%res% %2 |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #jq | jq |
# multiplication of real or complex numbers
def cmult(x; y):
if (x|type) == "number" then
if (y|type) == "number" then [ x*y, 0 ]
else [x * y[0], x * y[1]]
end
elif (y|type) == "number" then cmult(y;x)
else [ x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]]
end;
def cplus(x; y):
if (x|type) == "number" then
if (y|type) == "number" then [ x+y, 0 ]
else [ x + y[0], y[1]]
end
elif (y|type) == "number" then cplus(y;x)
else [ x[0] + y[0], x[1] + y[1] ]
end;
def cminus(x; y): cplus(x; cmult(-1; y));
# e(ix) = cos(x) + i sin(x)
def expi(x): [ (x|cos), (x|sin) ]; |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Julia | Julia | # v0.6
using Primes
function mersennefactor(p::Int)::Int
q = 2p + 1
while true
if log2(q) > p / 2
return -1
elseif q % 8 in (1, 7) && Primes.isprime(q) && powermod(2, p, q) == 1
return q
end
q += 2p
end
end
for i in filter(Primes.isprime, push!(collect(1:20), 929))
mf = mersennefactor(i)
if mf != -1 println("M$i = ", mf, " × ", (big(2) ^ i - 1) ÷ mf)
else println("M$i is prime") end
end |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Kotlin | Kotlin | // version 1.0.6
fun isPrime(n: Int): Boolean {
if (n < 2) return false
if (n % 2 == 0) return n == 2
if (n % 3 == 0) return n == 3
var d = 5
while (d * d <= n) {
if (n % d == 0) return false
d += 2
if (n % d == 0) return false
d += 4
}
return true
}
fun main(args: Array<String>) {
// test 929 plus all prime numbers below 100 which are known not to be Mersenne primes
val q = intArrayOf(11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929)
for (k in 0 until q.size) {
if (isPrime(q[k])) {
var i: Long
var d: Int
var p: Int
var r: Int = q[k]
while (r > 0) r = r shl 1
d = 2 * q[k] + 1
while (true) {
i = 1L
p = r
while (p != 0) {
i = (i * i) % d
if (p < 0) i *= 2
if (i > d) i -= d
p = p shl 1
}
if (i != 1L)
d += 2 * q[k]
else
break
}
println("2^${"%3d".format(q[k])} - 1 = 0 (mod $d)")
} else {
println("${q[k]} is not prime")
}
}
} |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Racket | Racket | #lang racket
(require math/number-theory)
(define (display-farey-sequence order show-fractions?)
(define f-s (farey-sequence order))
(printf "-- Farey Sequence for order ~a has ~a fractions~%" order (length f-s))
;; racket will simplify 0/1 and 1/1 to 0 and 1 respectively, so deconstruct into numerator and
;; denomimator (and take the opportunity to insert commas
(when show-fractions?
(displayln
(string-join
(for/list ((f f-s))
(format "~a/~a" (numerator f) (denominator f)))
", "))))
; compute and show the Farey sequence for order:
; 1 through 11 (inclusive).
(for ((order (in-range 1 (add1 11)))) (display-farey-sequence order #t))
; compute and display the number of fractions in the Farey sequence for order:
; 100 through 1,000 (inclusive) by hundreds.
(for ((order (in-range 100 (add1 1000) 100))) (display-farey-sequence order #f)) |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #Raku | Raku | sub farey ($order) {
my @l = 0/1, 1/1;
(2..$order).map: { push @l, |(1..$^d).map: { $_/$d } }
unique @l
}
say "Farey sequence order ";
.say for (1..11).hyper(:1batch).map: { "$_: ", .&farey.sort.map: *.nude.join('/') };
.say for (100, 200 ... 1000).race(:1batch).map: { "Farey sequence order $_ has " ~ [.&farey].elems ~ ' elements.' } |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Vlang | Vlang | import math.fractions
import math.big
fn bernoulli(n int) fractions.Fraction {
mut a := []fractions.Fraction{len: n+1}
for m,_ in a {
a[m] = fractions.fraction(1, i64(m+1))
for j := m; j >= 1; j-- {
mut d := a[j-1]
d = fractions.fraction(i64(j),i64(1)) * (d-a[j])
a[j-1]=d
}
}
// return the 'first' Bernoulli number
if n != 1 {
return a[0]
}
a[0] = a[0].negate()
return a[0]
}
fn binomial(n int, k int) i64 {
if n <= 0 || k <= 0 || n < k {
return 1
}
mut num, mut den := i64(1), i64(1)
for i := k + 1; i <= n; i++ {
num *= i64(i)
}
for i := 2; i <= n-k; i++ {
den *= i64(i)
}
return num / den
}
fn faulhaber_triangle(p int) []fractions.Fraction {
mut coeffs := []fractions.Fraction{len: p+1}
q := fractions.fraction(1, i64(p)+1)
mut t := fractions.fraction(1,1)
mut u := fractions.fraction(1,1)
mut sign := -1
for j,_ in coeffs {
sign *= -1
mut d := coeffs[p-j]
t=fractions.fraction(i64(sign),1)
u = fractions.fraction(binomial(p+1, j),1)
d=q*t
d*=u
d*=bernoulli(j)
coeffs[p-j]=d
}
return coeffs
}
fn main() {
for i in 0..10 {
coeffs := faulhaber_triangle(i)
for coeff in coeffs {
print("${coeff:5} ")
}
println('')
}
println('')
} |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #Wren | Wren | import "/fmt" for Fmt
import "/math" for Int
import "/big" for BigRat
var bernoulli = Fn.new { |n|
if (n < 0) Fiber.abort("Argument must be non-negative")
var a = List.filled(n+1, null)
for (m in 0..n) {
a[m] = BigRat.new(1, m+1)
var j = m
while (j >= 1) {
a[j-1] = (a[j-1] - a[j]) * BigRat.new(j, 1)
j = j - 1
}
}
return (n != 1) ? a[0] : -a[0] // 'first' Bernoulli number
}
var binomial = Fn.new { |n, k|
if (n < 0 || k < 0) Fiber.abort("Arguments must be non-negative integers")
if (n < k) Fiber.abort("The second argument cannot be more than the first.")
if (n == k) return 1
var prod = 1
var i = n - k + 1
while (i <= n) {
prod = prod * i
i = i + 1
}
return prod / Int.factorial(k)
}
var faulhaberTriangle = Fn.new { |p|
var coeffs = List.filled(p+1, null)
var q = BigRat.new(1, p+1)
var sign = -1
for (j in 0..p) {
sign = sign * -1
var b = BigRat.new(binomial.call(p+1, j), 1)
coeffs[p-j] = q * BigRat.new(sign, 1) * b * bernoulli.call(j)
}
return coeffs
}
BigRat.showAsInt = true
for (i in 0..9) {
var coeffs = faulhaberTriangle.call(i)
for (coeff in coeffs) Fmt.write("$5s ", coeff)
System.print()
}
System.print()
// get coeffs for (k + 1)th row
var k = 17
var cc = faulhaberTriangle.call(k)
var n = BigRat.new(1000, 1)
var np = BigRat.one
var sum = BigRat.zero
for (c in cc) {
np = np * n
sum = sum + np*c
}
System.print(sum) |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Haskell | Haskell | import Data.List (tails)
import Control.Monad (zipWithM_)
fiblike :: [Integer] -> [Integer]
fiblike st = xs where
xs = st ++ map (sum . take n) (tails xs)
n = length st
nstep :: Int -> [Integer]
nstep n = fiblike $ take n $ 1 : iterate (2*) 1
main :: IO ()
main = do
print $ take 10 $ fiblike [1,1]
print $ take 10 $ fiblike [2,1]
zipWithM_ (\n name -> do putStr (name ++ "nacci -> ")
print $ take 15 $ nstep n)
[2..] (words "fibo tribo tetra penta hexa hepta octo nona deca") |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Haskell | Haskell | ary = [1..10]
evens = [x | x <- ary, even x] |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #jq | jq | range(1;101)
| if . % 15 == 0 then "FizzBuzz"
elif . % 5 == 0 then "Buzz"
elif . % 3 == 0 then "Fizz"
else .
end |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #Oz | Oz | declare
class TextFile from Open.file Open.text end
In = {New TextFile init(name:"input.txt")}
Out = {New TextFile init(name:"output.txt" flags:[write text create truncate])}
proc {CopyAll In Out}
case {In getS($)} of false then skip
[] Line then
{Out putS(Line)}
{CopyAll In Out}
end
end
in
{CopyAll In Out}
{Out close}
{In close} |
http://rosettacode.org/wiki/File_input/output | File input/output | File input/output is part of Short Circuit's Console Program Basics selection.
Task
Create a file called "output.txt", and place in it the contents of the file "input.txt", via an intermediate variable.
In other words, your program will demonstrate:
how to read from a file into a variable
how to write a variable's contents into a file
Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
| #PARI.2FGP | PARI/GP | f=read("filename.in");
write("filename.out", f); |
http://rosettacode.org/wiki/Fibonacci_word | Fibonacci word | The Fibonacci Word may be created in a manner analogous to the Fibonacci Sequence as described here:
Define F_Word1 as 1
Define F_Word2 as 0
Form F_Word3 as F_Word2 concatenated with F_Word1 i.e.: 01
Form F_Wordn as F_Wordn-1 concatenated with F_wordn-2
Task
Perform the above steps for n = 37.
You may display the first few but not the larger values of n.
{Doing so will get the task's author into trouble with them what be (again!).}
Instead, create a table for F_Words 1 to 37 which shows:
The number of characters in the word
The word's Entropy
Related tasks
Fibonacci word/fractal
Entropy
Entropy/Narcissist
| #Tcl | Tcl | proc fibwords {n} {
set fw {1 0}
while {[llength $fw] < $n} {
lappend fw [lindex $fw end][lindex $fw end-1]
}
return $fw
}
proc fibwordinfo {num word} {
# Entropy calculator from Tcl solution of that task
set log2 [expr log(2)]
set len [string length $word]
foreach char [split $word ""] {dict incr counts $char}
set entropy 0.0
foreach count [dict values $counts] {
set freq [expr {$count / double($len)}]
set entropy [expr {$entropy - $freq * log($freq)/$log2}]
}
# Output formatting from Clojure solution
puts [format "%2d %10d %.15f %s" $num $len $entropy \
[if {$len < 35} {set word} {subst "<too long>"}]]
}
# Output formatting from Clojure solution
puts [format "%2s %10s %17s %s" N Length Entropy Fibword]
foreach word [fibwords 37] {
fibwordinfo [incr i] $word
} |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Apex | Apex |
/*
author: snugsfbay
date: March 3, 2016
description: Create a list of x numbers in the Fibonacci sequence.
- user may specify the length of the list
- enforces a minimum of 2 numbers in the sequence because any fewer is not a sequence
- enforces a maximum of 47 because further values are too large for integer data type
- Fibonacci sequence always starts with 0 and 1 by definition
*/
public class FibNumbers{
final static Integer MIN = 2; //minimum length of sequence
final static Integer MAX = 47; //maximum length of sequence
/*
description: method to create a list of numbers in the Fibonacci sequence
param: user specified integer representing length of sequence should be 2-47, inclusive.
- Sequence starts with 0 and 1 by definition so the minimum length could be as low as 2.
- For 48th number in sequence or greater, code would require a Long data type rather than an Integer.
return: list of integers in sequence.
*/
public static List<Integer> makeSeq(Integer len){
List<Integer> fib = new List<Integer>{0,1}; // initialize list with first two values
Integer i;
if(len<MIN || len==null || len>MAX) {
if (len>MAX){
len=MAX; //set length to maximum if user entered too high a value
}else{
len=MIN; //set length to minimum if user entered too low a value or none
}
} //This could be refactored using teneray operator, but we want code coverage to be reflected for each condition
//start with initial list size to find previous two values in the sequence, continue incrementing until list reaches user defined length
for(i=fib.size(); i<len; i++){
fib.add(fib[i-1]+fib[i-2]); //create new number based on previous numbers and add that to the list
}
return fib;
}
}
|
http://rosettacode.org/wiki/Factors_of_an_integer | Factors of an integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Compute the factors of a positive integer.
These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty; this task does not require handling of either of these cases).
Note that every prime number has two factors: 1 and itself.
Related tasks
count in factors
prime decomposition
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
sequence: smallest number greater than previous term with exactly n divisors
| #BBC_BASIC | BBC BASIC | INSTALL @lib$+"SORTLIB"
sort% = FN_sortinit(0, 0)
PRINT "The factors of 45 are " FNfactorlist(45)
PRINT "The factors of 12345 are " FNfactorlist(12345)
END
DEF FNfactorlist(N%)
LOCAL C%, I%, L%(), L$
DIM L%(32)
FOR I% = 1 TO SQR(N%)
IF (N% MOD I% = 0) THEN
L%(C%) = I%
C% += 1
IF (N% <> I%^2) THEN
L%(C%) = (N% DIV I%)
C% += 1
ENDIF
ENDIF
NEXT I%
CALL sort%, L%(0)
FOR I% = 0 TO C%-1
L$ += STR$(L%(I%)) + ", "
NEXT
= LEFT$(LEFT$(L$)) |
http://rosettacode.org/wiki/Fast_Fourier_transform | Fast Fourier transform | Task
Calculate the FFT (Fast Fourier Transform) of an input sequence.
The most general case allows for complex numbers at the input
and results in a sequence of equal length, again of complex numbers.
If you need to restrict yourself to real numbers, the output should
be the magnitude (i.e.: sqrt(re2 + im2)) of the complex result.
The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that.
Further optimizations are possible but not required.
| #Julia | Julia | using FFTW # or using DSP
fft([1,1,1,1,0,0,0,0]) |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Lingo | Lingo | on modPow (b, e, m)
bits = getBits(e)
sq = 1
repeat while TRUE
tb = bits[1]
bits.deleteAt(1)
sq = sq*sq
if tb then sq=sq*b
sq = sq mod m
if bits.count=0 then return sq
end repeat
end
on getBits (n)
bits = []
f = 1
repeat while TRUE
bits.addAt(1, bitAnd(f, n)>0)
f = f * 2
if f>n then exit repeat
end repeat
return bits
end |
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number | Factors of a Mersenne number | A Mersenne number is a number in the form of 2P-1.
If P is prime, the Mersenne number may be a Mersenne prime
(if P is not prime, the Mersenne number is also not prime).
In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.
There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1).
Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).
The following is how to implement this modPow yourself:
For example, let's compute 223 mod 47.
Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it.
Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47.
Use the result of the modulo from the last step as the initial value of square in the next step:
remove optional
square top bit multiply by 2 mod 47
──────────── ─────── ───────────── ──────
1*1 = 1 1 0111 1*2 = 2 2
2*2 = 4 0 111 no 4
4*4 = 16 1 11 16*2 = 32 32
32*32 = 1024 1 1 1024*2 = 2048 27
27*27 = 729 1 729*2 = 1458 1
Since 223 mod 47 = 1, 47 is a factor of 2P-1.
(To see this, subtract 1 from both sides: 223-1 = 0 mod 47.)
Since we've shown that 47 is a factor, 223-1 is not prime.
Further properties of Mersenne numbers allow us to refine the process even more.
Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8.
Finally any potential factor q must be prime.
As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).
These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Task
Using the above method find a factor of 2929-1 (aka M929)
Related tasks
count in factors
prime decomposition
factors of an integer
Sieve of Eratosthenes
primality by trial division
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
See also
Computers in 1948: 2127 - 1
(Note: This video is no longer available because the YouTube account associated with this video has been terminated.)
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | For[i = 2, i < Prime[1000000], i = NextPrime[i],
If[Mod[2^44497, i] == 1,
Print["divisible by "<>i]]]; Print["prime test passed; call Lucas and Lehmer"] |
http://rosettacode.org/wiki/Farey_sequence | Farey sequence | The Farey sequence Fn of order n is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.
The Farey sequence is sometimes incorrectly called a Farey series.
Each Farey sequence:
starts with the value 0 (zero), denoted by the fraction
0
1
{\displaystyle {\frac {0}{1}}}
ends with the value 1 (unity), denoted by the fraction
1
1
{\displaystyle {\frac {1}{1}}}
.
The Farey sequences of orders 1 to 5 are:
F
1
=
0
1
,
1
1
{\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}}
F
2
=
0
1
,
1
2
,
1
1
{\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}}
F
3
=
0
1
,
1
3
,
1
2
,
2
3
,
1
1
{\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}}
F
4
=
0
1
,
1
4
,
1
3
,
1
2
,
2
3
,
3
4
,
1
1
{\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}}
F
5
=
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1
{\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}}
Task
Compute and show the Farey sequence for orders 1 through 11 (inclusive).
Compute and display the number of fractions in the Farey sequence for order 100 through 1,000 (inclusive) by hundreds.
Show the fractions as n/d (using the solidus [or slash] to separate the numerator from the denominator).
The length (the number of fractions) of a Farey sequence asymptotically approaches:
3 × n2 ÷
π
{\displaystyle \pi }
2
See also
OEIS sequence A006842 numerators of Farey series of order 1, 2, ···
OEIS sequence A006843 denominators of Farey series of order 1, 2, ···
OEIS sequence A005728 number of fractions in Farey series of order n
MathWorld entry Farey sequence
Wikipedia entry Farey sequence
| #REXX | REXX | /*REXX program computes and displays a Farey sequence (or the number of fractions). */
parse arg LO HI INC . /*obtain optional arguments from the CL*/
if LO=='' | LO=="," then LO= 1 /*Not specified? Then use the default.*/
if HI=='' | HI=="," then HI= LO /* " " " " " " */
if INC=='' | INC=="," then INC= 1 /* " " " " " " */
sw= linesize() - 1 /*obtain the linesize of the terminal. */
oLO= LO /*save original value of the the orders*/
do j=abs(LO) to abs(HI) by INC /*process each of the specified numbers*/
#= fareyF(j) /*go ye forth & compute Farey sequence.*/
say center('Farey sequence for order ' j " has " # ' fractions.', sw, "═")
if oLO>=0 then call show /*display the Farey fractions. */
end /*j*/
exit # /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
fareyF: procedure expose n. d.; parse arg x
n.1= 0; d.1= 1; n.2= 1; d.2= x /*some kit parts for the fraction list.*/
do k=1 until n.z>x /*construct from thirds and on "up".*/
y= k+1; z= k+2 /*calculate the next K and the next Z. */
_= d.k + x /*calculation used as a shortcut. */
n.z= _ % d.y*n.y - n.k /* " the fraction numerator. */
d.z= _ % d.y*d.y - d.k /* " " " denominator. */
if n.z>x then leave /*Should the construction be stopped ? */
end /*k*/
return z - 1 /*return the count of Farey fractions. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: $= '0/1' /*construct the start of the Farey seq.*/
do k=2 for #-1; _= n.k'/'d.k /*build a fraction: numer. / denom. */
if length($ _)>sw then do; say $; $= _; end /*Is new line too wide? Show it*/
else $= $ _ /*No? Keep it & keep building.*/
end /*k*/
if $\=='' then say $; return /*display any residual fractions. */ |
http://rosettacode.org/wiki/Faulhaber%27s_triangle | Faulhaber's triangle | Named after Johann Faulhaber, the rows of Faulhaber's triangle are the coefficients of polynomials that represent sums of integer powers, which are extracted from Faulhaber's formula:
∑
k
=
1
n
k
p
=
1
p
+
1
∑
j
=
0
p
(
p
+
1
j
)
B
j
n
p
+
1
−
j
{\displaystyle \sum _{k=1}^{n}k^{p}={1 \over p+1}\sum _{j=0}^{p}{p+1 \choose j}B_{j}n^{p+1-j}}
where
B
n
{\displaystyle B_{n}}
is the nth-Bernoulli number.
The first 5 rows of Faulhaber's triangle, are:
1
1/2 1/2
1/6 1/2 1/3
0 1/4 1/2 1/4
-1/30 0 1/3 1/2 1/5
Using the third row of the triangle, we have:
∑
k
=
1
n
k
2
=
1
6
n
+
1
2
n
2
+
1
3
n
3
{\displaystyle \sum _{k=1}^{n}k^{2}={1 \over 6}n+{1 \over 2}n^{2}+{1 \over 3}n^{3}}
Task
show the first 10 rows of Faulhaber's triangle.
using the 18th row of Faulhaber's triangle, compute the sum:
∑
k
=
1
1000
k
17
{\displaystyle \sum _{k=1}^{1000}k^{17}}
(extra credit).
See also
Bernoulli numbers
Evaluate binomial coefficients
Faulhaber's formula (Wikipedia)
Faulhaber's triangle (PDF)
| #zkl | zkl | foreach p in (10){
faulhaberFormula(p).apply("%7s".fmt).concat().println();
}
// each term of faulhaberFormula is BigInt/BigInt
[1..].zipWith(fcn(n,rat){ rat*BN(1000).pow(n) }, faulhaberFormula(17))
.walk() // -->(0, -3617/60 * 1000^2, 0, 595/3 * 1000^4 ...)
.reduce('+) // rat + rat + ...
.println(); |
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences | Fibonacci n-step number sequences | These number series are an expansion of the ordinary Fibonacci sequence where:
For
n
=
2
{\displaystyle n=2}
we have the Fibonacci sequence; with initial values
[
1
,
1
]
{\displaystyle [1,1]}
and
F
k
2
=
F
k
−
1
2
+
F
k
−
2
2
{\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}}
For
n
=
3
{\displaystyle n=3}
we have the tribonacci sequence; with initial values
[
1
,
1
,
2
]
{\displaystyle [1,1,2]}
and
F
k
3
=
F
k
−
1
3
+
F
k
−
2
3
+
F
k
−
3
3
{\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}}
For
n
=
4
{\displaystyle n=4}
we have the tetranacci sequence; with initial values
[
1
,
1
,
2
,
4
]
{\displaystyle [1,1,2,4]}
and
F
k
4
=
F
k
−
1
4
+
F
k
−
2
4
+
F
k
−
3
4
+
F
k
−
4
4
{\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}}
...
For general
n
>
2
{\displaystyle n>2}
we have the Fibonacci
n
{\displaystyle n}
-step sequence -
F
k
n
{\displaystyle F_{k}^{n}}
; with initial values of the first
n
{\displaystyle n}
values of the
(
n
−
1
)
{\displaystyle (n-1)}
'th Fibonacci
n
{\displaystyle n}
-step sequence
F
k
n
−
1
{\displaystyle F_{k}^{n-1}}
; and
k
{\displaystyle k}
'th value of this
n
{\displaystyle n}
'th sequence being
F
k
n
=
∑
i
=
1
(
n
)
F
k
−
i
(
n
)
{\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}}
For small values of
n
{\displaystyle n}
, Greek numeric prefixes are sometimes used to individually name each series.
Fibonacci
n
{\displaystyle n}
-step sequences
n
{\displaystyle n}
Series name
Values
2
fibonacci
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ...
3
tribonacci
1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ...
4
tetranacci
1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ...
5
pentanacci
1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ...
6
hexanacci
1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ...
7
heptanacci
1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ...
8
octonacci
1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ...
9
nonanacci
1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ...
10
decanacci
1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ...
Allied sequences can be generated where the initial values are changed:
The Lucas series sums the two preceding values like the fibonacci series for
n
=
2
{\displaystyle n=2}
but uses
[
2
,
1
]
{\displaystyle [2,1]}
as its initial values.
Task
Write a function to generate Fibonacci
n
{\displaystyle n}
-step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series.
Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences.
Related tasks
Fibonacci sequence
Wolfram Mathworld
Hofstadter Q sequence
Leonardo numbers
Also see
Lucas Numbers - Numberphile (Video)
Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Icon_and_Unicon | Icon and Unicon | procedure main(A)
every writes("F2:\t"|right((fnsGen(1,1))\14,5) | "\n")
every writes("F3:\t"|right((fnsGen(1,1,2))\14,5) | "\n")
every writes("F4:\t"|right((fnsGen(1,1,2,4))\14,5) | "\n")
every writes("Lucas:\t"|right((fnsGen(2,1))\14,5) | "\n")
every writes("F?:\t"|right((fnsGen!A)\14,5) | "\n")
end
procedure fnsGen(cache[])
n := *cache
every i := seq() do {
if i > *cache then every (put(cache,0),cache[i] +:= cache[i-n to i-1])
suspend cache[i]
}
end |
http://rosettacode.org/wiki/Filter | Filter | Task
Select certain elements from an Array into a new Array in a generic way.
To demonstrate, select all even numbers from an Array.
As an option, give a second solution which filters destructively,
by modifying the original Array rather than creating a new Array.
| #Icon_and_Unicon | Icon and Unicon | procedure main()
every put(A := [],1 to 10) # make a list of 1..10
every put(B := [],iseven(!A)) # make a second list and filter out odd numbers
every writes(!B," ") | write() # show
end
procedure iseven(x) #: return x if x is even or fail
if x % 2 = 0 then return x
end |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Julia | Julia | for i in 1:100
if i % 15 == 0
println("FizzBuzz")
elseif i % 3 == 0
println("Fizz")
elseif i % 5 == 0
println("Buzz")
else
println(i)
end
end |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.