task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Pascal
Pascal
#!/usr/bin/perl   open my $fh_in, '<', 'input.txt' or die "could not open <input.txt> for reading: $!"; open my $fh_out, '>', 'output.txt' or die "could not open <output.txt> for writing: $!"; # '>' overwrites file, '>>' appends to file, just like in the shell   binmode $fh_out; # marks filehandle for binary content on systems where that matters   print $fh_out $_ while <$fh_in>; # prints current line to file associated with $fh_out filehandle   # the same, less concise #while (<$fh_in>) { # print $fh_out $_; #};   close $fh_in; close $fh_out;
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Perl
Perl
#!/usr/bin/perl   open my $fh_in, '<', 'input.txt' or die "could not open <input.txt> for reading: $!"; open my $fh_out, '>', 'output.txt' or die "could not open <output.txt> for writing: $!"; # '>' overwrites file, '>>' appends to file, just like in the shell   binmode $fh_out; # marks filehandle for binary content on systems where that matters   print $fh_out $_ while <$fh_in>; # prints current line to file associated with $fh_out filehandle   # the same, less concise #while (<$fh_in>) { # print $fh_out $_; #};   close $fh_in; close $fh_out;
http://rosettacode.org/wiki/Fibonacci_word
Fibonacci word
The   Fibonacci Word   may be created in a manner analogous to the   Fibonacci Sequence   as described here: Define   F_Word1   as   1 Define   F_Word2   as   0 Form     F_Word3   as   F_Word2     concatenated with   F_Word1   i.e.:   01 Form     F_Wordn   as   F_Wordn-1   concatenated with   F_wordn-2 Task Perform the above steps for     n = 37. You may display the first few but not the larger values of   n. {Doing so will get the task's author into trouble with them what be (again!).} Instead, create a table for   F_Words   1   to   37   which shows:   The number of characters in the word   The word's Entropy Related tasks   Fibonacci word/fractal   Entropy   Entropy/Narcissist
#Wren
Wren
import "/fmt" for Fmt   var entropy = Fn.new { |s| var m = {} for (c in s) { var d = m[c] m[c] = (d) ? d + 1 : 1 } var hm = 0 for (k in m.keys) { var c = m[k] hm = hm + c * c.log2 } var l = s.count return l.log2 - hm/l }   var fibWord = Fn.new { |n| if (n < 2) return n.toString var a = "1" var b = "0" var i = 3 while (i <= n) { var c = b + a a = b b = c i = i + 1 } return b }   Fmt.print("$2s $10s $10m $s", "n", "Length", "Entropy", "Fib word") for (i in 1..37) { var fw = fibWord.call(i) if (i < 10) { Fmt.print("$2d $,10d $0.8f $s", i, fw.count, entropy.call(fw), fw) } else { Fmt.print("$2d $,10d $0.8f $s", i, fw.count, entropy.call(fw), Fmt.abbreviate(20, fw)) } }
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#APL
APL
  fib←{⍵≤1:⍵ ⋄ (∇ ⍵-1)+∇ ⍵-2}  
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#bc
bc
/* Calculate the factors of n and return their count. * This function mutates the global array f[] which will * contain all factors of n in ascending order after the call! */ define f(n) { auto i, d, h, h[], l, o /* Local variables: * i: Loop variable. * d: Complementary (higher) factor to i. * h: Will always point to the last element of h[]. * h[]: Array to hold the greater factor of the pair (x, y), where * x * y == n. The factors are stored in descending order. * l: Will always point to the next free spot in f[]. * o: For saving the value of scale. */   /* Use integer arithmetic */ o = scale scale = 0   /* Two factors are 1 and n (if n != 1) */ f[l++] = 1 if (n == 1) return(1) h[0] = n   /* Main loop */ for (i = 2; i < h[h]; i++) { if (n % i == 0) { d = n / i if (d != i) { h[++h] = d } f[l++] = i } }   /* Append the values in h[] to f[] */ while (h >= 0) { f[l++] = h[h--] }   scale = o return(l) }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Klong
Klong
fft::{ff2::{[n e o p t k];n::#x; f::{p::2:#x;e::ff2(*'p);o::ff2({x@1}'p);k::-1; t::{k::k+1;cmul(cexp(cdiv(cmul([0 -2];(k*pi),0);n,0));x)}'o; (e cadd't),e csub't};  :[n<2;x;f(x)]}; n::#x;k::{(2^x)<n}{1+x}:~1;n#ff2({x,0}'x,&(2^k)-n)}
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Maxima
Maxima
mersenne_fac(p) := block([m: 2^p - 1, k: 1], while mod(m, 2 * k * p + 1) # 0 do k: k + 1, 2 * k * p + 1 )$   mersenne_fac(929); /* 13007 */
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Nim
Nim
import math   proc isPrime(a: int): bool = if a == 2: return true if a < 2 or a mod 2 == 0: return false for i in countup(3, int sqrt(float a), 2): if a mod i == 0: return false return true   const q = 929 if not isPrime q: quit 1 var r = q while r > 0: r = r shl 1 var d = 2 * q + 1 while true: var i = 1 var p = r while p != 0: i = (i * i) mod d if p < 0: i *= 2 if i > d: i -= d p = p shl 1 if i != 1: d += 2 * q else: break echo "2^",q," - 1 = 0 (mod ",d,")"
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Ring
Ring
  # Project : Farey sequence   for i = 1 to 11 count = 0 see "F" + string(i) + " = " farey(i, false) next see nl for x = 100 to 1000 step 100 count = 0 see "F" + string(x) + " = " see farey(x, false) see nl next   func farey(n, descending) a = 0 b = 1 c = 1 d = n if descending = true a = 1 c = n -1 ok count = count + 1 if n < 12 see string(a) + "/" + string(b) + " " ok while ((c <= n) and not descending) or ((a > 0) and descending) aa = a bb = b cc = c dd = d k = floor((n + b) / d) a = cc b = dd c = k * cc - aa d = k * dd - bb count = count + 1 if n < 12 see string(a) + "/" + string(b) + " " ok end if n < 12 see nl ok return count  
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Ruby
Ruby
def farey(n, length=false) if length (n*(n+3))/2 - (2..n).sum{|k| farey(n/k, true)} else (1..n).each_with_object([]){|k,a|(0..k).each{|m|a << Rational(m,k)}}.uniq.sort end end   puts 'Farey sequence for order 1 through 11 (inclusive):' for n in 1..11 puts "F(#{n}): " + farey(n).join(", ") end puts 'Number of fractions in the Farey sequence:' for i in (100..1000).step(100) puts "F(%4d) =%7d" % [i, farey(i, true)] end
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#J
J
nacci =: (] , +/@{.)^:(-@#@]`(-#)`])
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#IDL
IDL
result = array[where(NOT array AND 1)]
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#K
K
`0:\:{:[0=#a:{,/$(:[0=x!3;"Fizz"];:[0=x!5;"Buzz"])}@x;$x;a]}'1_!101
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Phix
Phix
integer fn = open("input.txt","rb") string txt = get_text(fn) close(fn) fn = open("output.txt","wb") puts(fn,txt) close(fn)
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#PHP
PHP
<?php   if (!$in = fopen('input.txt', 'r')) { die('Could not open input file.'); }   if (!$out = fopen('output.txt', 'w')) { die('Could not open output file.'); }   while (!feof($in)) { $data = fread($in, 512); fwrite($out, $data); }   fclose($out); fclose($in); ?>
http://rosettacode.org/wiki/Fibonacci_word
Fibonacci word
The   Fibonacci Word   may be created in a manner analogous to the   Fibonacci Sequence   as described here: Define   F_Word1   as   1 Define   F_Word2   as   0 Form     F_Word3   as   F_Word2     concatenated with   F_Word1   i.e.:   01 Form     F_Wordn   as   F_Wordn-1   concatenated with   F_wordn-2 Task Perform the above steps for     n = 37. You may display the first few but not the larger values of   n. {Doing so will get the task's author into trouble with them what be (again!).} Instead, create a table for   F_Words   1   to   37   which shows:   The number of characters in the word   The word's Entropy Related tasks   Fibonacci word/fractal   Entropy   Entropy/Narcissist
#zkl
zkl
fcn entropy(bs){ //binary String-->Float len:=bs.len(); num1s:=(bs-"0").len(); T(num1s,len-num1s).filter().apply('wrap(p){ p=p.toFloat()/len; -p*p.log() }) .sum(0.0) / (2.0).log(); }   " N Length Entropy Fibword".println(); ws:=L("1","0"); foreach n in ([1..37]){ if(n>2) ws.append(ws[-1]+ws[-2]); w:=ws[-1]; "%3d %10d %2.10f %s".fmt(n,w.len(),entropy(w), w.len()<50 and w or "<too long>").println(); }
http://rosettacode.org/wiki/Fibonacci_word
Fibonacci word
The   Fibonacci Word   may be created in a manner analogous to the   Fibonacci Sequence   as described here: Define   F_Word1   as   1 Define   F_Word2   as   0 Form     F_Word3   as   F_Word2     concatenated with   F_Word1   i.e.:   01 Form     F_Wordn   as   F_Wordn-1   concatenated with   F_wordn-2 Task Perform the above steps for     n = 37. You may display the first few but not the larger values of   n. {Doing so will get the task's author into trouble with them what be (again!).} Instead, create a table for   F_Words   1   to   37   which shows:   The number of characters in the word   The word's Entropy Related tasks   Fibonacci word/fractal   Entropy   Entropy/Narcissist
#ZX_Spectrum_Basic
ZX Spectrum Basic
10 LET x$="1": LET y$="0": LET z$="" 20 PRINT "N, Length, Entropy, Word" 30 LET n=1 40 PRINT n;" ";LEN x$;" "; 50 LET s$=x$: LET base=2: GO SUB 1000 60 PRINT entropy 70 PRINT x$ 80 LET n=2 90 PRINT n;" ";LEN y$;" "; 100 LET s$=y$: GO SUB 1000 110 PRINT entropy 120 PRINT y$ 130 FOR n=1 TO 18 140 LET x$="1": LET y$="0" 150 FOR i=1 TO n 160 LET z$=y$+x$ 170 LET p$=x$: LET x$=y$: LET y$=p$ 180 LET p$=y$: LET y$=z$: LET z$=p$ 190 NEXT i 200 LET x$="": LET z$="" 210 LET s$=y$: GO SUB 1000 220 PRINT n+2;" ";LEN y$;" ";entropy 230 PRINT y$ AND (LEN y$<32) 240 NEXT n 250 STOP 1000 REM Calculate entropy 1010 LET sourcelen=LEN s$: LET entropy=0 1020 DIM t(255) 1030 FOR j=1 TO sourcelen 1040 LET digit=VAL s$(j)+1: LET t(digit)=t(digit)+1 1050 NEXT j 1060 FOR j=1 TO 255 1070 IF t(j)>0 THEN LET prop=t(j)/sourcelen: LET entropy=entropy-(prop*LN (prop)/LN (base)) 1080 NEXT j 1090 RETURN
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#AppleScript
AppleScript
set fibs to {} set x to (text returned of (display dialog "What fibbonaci number do you want?" default answer "3")) set x to x as integer repeat with y from 1 to x if (y = 1 or y = 2) then copy 1 to the end of fibs else copy ((item (y - 1) of fibs) + (item (y - 2) of fibs)) to the end of fibs end if end repeat return item x of fibs
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Befunge
Befunge
10:p&v: >:0:g%#v_0:g\:0:g/\v >:0:g:*`| > >0:g1+0:p >:0:g:*-#v_0:g\>$>:!#@_.v > ^ ^ ," "<
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Kotlin
Kotlin
import java.lang.Math.*   class Complex(val re: Double, val im: Double) { operator infix fun plus(x: Complex) = Complex(re + x.re, im + x.im) operator infix fun minus(x: Complex) = Complex(re - x.re, im - x.im) operator infix fun times(x: Double) = Complex(re * x, im * x) operator infix fun times(x: Complex) = Complex(re * x.re - im * x.im, re * x.im + im * x.re) operator infix fun div(x: Double) = Complex(re / x, im / x) val exp: Complex by lazy { Complex(cos(im), sin(im)) * (cosh(re) + sinh(re)) }   override fun toString() = when { b == "0.000" -> a a == "0.000" -> b + 'i' im > 0 -> a + " + " + b + 'i' else -> a + " - " + b + 'i' }   private val a = "%1.3f".format(re) private val b = "%1.3f".format(abs(im)) }
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Octave
Octave
% test a bit; lsb is 1 (like built-in bit* ops) function b = bittst(n, p) b = bitand(n, 2^(p-1)) > 0; endfunction   function f = Mfactor(p) % msb is the index of the first non-zero bit [b, msb] = max(bitand(p, 2 .^ [32:-1:1]) > 0); maxk = floor(sqrt(intmax()) / p); for k = 1 : maxk q = 2*p*k + 1; if ( ! isprime(q) ) continue; endif if ( (mod(q, 8) != 1) && ( mod(q, 8) != 7) ) continue; endif n = 1; for i = msb:-1:1 if ( bittst(p, i) ) n = mod(n*n*2, q); else n = mod(n*n, q); endif endfor if ( n==1 ) f = q; return endif endfor f = 0; endfunction   printf("%d\n", Mfactor(929));
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Rust
Rust
#[derive(Copy, Clone)] struct Fraction { numerator: u32, denominator: u32, }   use std::fmt;   impl fmt::Display for Fraction { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}/{}", self.numerator, self.denominator) } }   impl Fraction { fn new(n: u32, d: u32) -> Fraction { Fraction { numerator: n, denominator: d, } } }   fn farey_sequence(n: u32) -> impl std::iter::Iterator<Item = Fraction> { let mut a = 0; let mut b = 1; let mut c = 1; let mut d = n; std::iter::from_fn(move || { if a > n { return None; } let result = Fraction::new(a, b); let k = (n + b) / d; let next_c = k * c - a; let next_d = k * d - b; a = c; b = d; c = next_c; d = next_d; Some(result) }) }   fn main() { for n in 1..=11 { print!("{}:", n); for f in farey_sequence(n) { print!(" {}", f); } println!(); } for n in (100..=1000).step_by(100) { println!("{}: {}", n, farey_sequence(n).count()); } }
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Scala
Scala
  object FareySequence {   def fareySequence(n: Int, start: (Int, Int), stop: (Int, Int)): LazyList[(Int, Int)] = { val (nominator_l, denominator_l) = start val (nominator_r, denominator_r) = stop   val mediant = ((nominator_l + nominator_r), (denominator_l + denominator_r))   if (mediant._2 <= n) fareySequence(n, start, mediant) ++ mediant #:: fareySequence(n, mediant, stop) else LazyList.empty }   def farey(n: Int, start: (Int, Int) = (0, 1), stop: (Int, Int) = (1, 1)): LazyList[(Int, Int)] = { start #:: fareySequence(n, start, stop) ++ stop #:: LazyList.empty[(Int, Int)] }   def main(args: Array[String]): Unit = { for (i <- 1 to 11) { println(s"$i: " + farey(i).map(e => s"${e._1}/${e._2}").mkString(", ")) } println for (i <- 100 to 1000 by 100) { println(s"$i: " + farey(i).length + " elements") } }   }  
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Java
Java
class Fibonacci { public static int[] lucas(int n, int numRequested) { if (n < 2) throw new IllegalArgumentException("Fibonacci value must be at least 2"); return fibonacci((n == 2) ? new int[] { 2, 1 } : lucas(n - 1, n), numRequested); }   public static int[] fibonacci(int n, int numRequested) { if (n < 2) throw new IllegalArgumentException("Fibonacci value must be at least 2"); return fibonacci((n == 2) ? new int[] { 1, 1 } : fibonacci(n - 1, n), numRequested); }   public static int[] fibonacci(int[] startingValues, int numRequested) { int[] output = new int[numRequested]; int n = startingValues.length; System.arraycopy(startingValues, 0, output, 0, n); for (int i = n; i < numRequested; i++) for (int j = 1; j <= n; j++) output[i] += output[i - j]; return output; }   public static void main(String[] args) { for (int n = 2; n <= 10; n++) { System.out.print("nacci(" + n + "):"); for (int value : fibonacci(n, 15)) System.out.print(" " + value); System.out.println(); } for (int n = 2; n <= 10; n++) { System.out.print("lucas(" + n + "):"); for (int value : lucas(n, 15)) System.out.print(" " + value); System.out.println(); } } }
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#J
J
(#~ f) v
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Kamailio_Script
Kamailio Script
# FizzBuzz log_stderror=yes loadmodule "pv" loadmodule "xlog"   route { $var(i) = 1; while ($var(i) <= 1000) { if ($var(i) mod 15 == 0) { xlog("FizzBuzz\n"); } else if ($var(i) mod 5 == 0) { xlog("Buzz\n"); } else if ($var(i) mod 3 == 0) { xlog("Fizz\n"); } else { xlog("$var(i)\n"); } $var(i) = $var(i) + 1; } }
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#PicoLisp
PicoLisp
(let V (in "input.txt" (till)) (out "output.txt" (prin V)) )
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Pike
Pike
  object lines = Stdio.File("input.txt")->line_iterator(); object out = Stdio.File("output.txt", "cw"); foreach(lines; int line_number; string line) out->write(line + "\n");  
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Arendelle
Arendelle
( fibonacci , 1; 1 ) [ 98 , // 100 numbers of fibonacci ( fibonacci[ @fibonacci? ] , @fibonacci[ @fibonacci - 1 ] + @fibonacci[ @fibonacci - 2 ] ) "Index: | @fibonacci? | => | @fibonacci[ @fibonacci? - 1 ] |" ]
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#BQN
BQN
Factors ← (1+↕)⊸(⊣/˜0=|)   •Show Factors 12345 •Show Factors 729
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Lambdatalk
Lambdatalk
    1) the function fft   {def fft {lambda {:s :x} {if {= {list.length :x} 1} then :x else {let { {:s :s} {:ev {fft :s {evens :x}} } {:od {fft :s {odds  :x}} } } {let { {:ev :ev} {:t {rotate :s :od 0 {list.length :od}}} } {list.append {list.map Cadd :ev :t} {list.map Csub :ev :t}} }}}}}   {def rotate {lambda {:s :f :k :N} {if {list.null? :f} then nil else {cons {Cmul {car :f} {Cexp {Cnew 0 {/ {* :s {PI} :k} :N}}}} {rotate :s {cdr :f} {+ :k 1} :N}}}}}   2) functions for lists   We add to the existing {lambda talk}'s list primitives a small set of functions required by the function fft.   {def evens {lambda {:l} {if {list.null? :l} then nil else {cons {car :l} {evens {cdr {cdr :l}}}}}}}   {def odds {lambda {:l} {if {list.null? {cdr :l}} then nil else {cons {car {cdr :l}} {odds {cdr {cdr :l}}}}}}}   {def list.map {def list.map.r {lambda {:f :a :b :c} {if {list.null? :a} then :c else {list.map.r :f {cdr :a} {cdr :b} {cons {:f {car :a} {car :b}} :c}} }}} {lambda {:f :a :b} {list.map.r :f {list.reverse :a} {list.reverse :b} nil}}}   {def list.append {def list.append.r {lambda {:a :b} {if {list.null? :b} then :a else {list.append.r {cons {car :b} :a} {cdr :b}}}}} {lambda {:a :b} {list.append.r :b {list.reverse :a}} }}   3) functions for Cnumbers   {lambda talk} has no primitive functions working on complex numbers. We add the minimal set required by the function fft.   {def Cnew {lambda {:x :y} {cons :x :y} }}   {def Cnorm {lambda {:c} {sqrt {+ {* {car :c} {car :c}} {* {cdr :c} {cdr :c}}}} }}   {def Cadd {lambda {:x :y} {cons {+ {car :x} {car :y}} {+ {cdr :x} {cdr :y}}} }}   {def Csub {lambda {:x :y} {cons {- {car :x} {car :y}} {- {cdr :x} {cdr :y}}} }}   {def Cmul {lambda {:x :y} {cons {- {* {car :x} {car :y}} {* {cdr :x} {cdr :y}}} {+ {* {car :x} {cdr :y}} {* {cdr :x} {car :y}}}} }}   {def Cexp {lambda {:x} {cons {* {exp {car :x}} {cos {cdr :x}}} {* {exp {car :x}} {sin {cdr :x}}}} }}   {def Clist {lambda {:s} {list.new {map {lambda {:i} {cons :i 0}} :s}}}}   4) testing   Applying the fft function on such a sample (1 1 1 1 0 0 0 0) where numbers have been promoted as complex   {list.disp {fft -1 {Clist 1 1 1 1 0 0 0 0}}} ->   (4 0) (1 -2.414213562373095) (0 0) (1 -0.4142135623730949) (0 0) (0.9999999999999999 0.4142135623730949) (0 0) (0.9999999999999997 2.414213562373095)   A more usefull example can be seen in http://lambdaway.free.fr/lambdaspeech/?view=zorg    
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#PARI.2FGP
PARI/GP
factorMersenne(p)={ forstep(q=2*p+1,sqrt(2)<<(p\2),2*p, [1,0,0,0,0,0,1][q%8] && Mod(2, q)^p==1 && return(q) ); 1<<p-1 }; factorMersenne(929)
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Pascal
Pascal
program FactorsMersenneNumber(input, output);   function isPrime(n: longint): boolean; var d: longint; begin isPrime := true; if (n mod 2) = 0 then begin isPrime := (n = 2); exit; end; if (n mod 3) = 0 then begin isPrime := (n = 3); exit; end; d := 5; while d*d <= n do begin if (n mod d) = 0 then begin isPrime := false; exit; end; d := d + 2; end; end;   function btest(n, pos: longint): boolean; begin btest := (n shr pos) mod 2 = 1; end;   function MFactor(p: longint): longint; var i, k, maxk, msb, n, q: longint; begin for i := 30 downto 0 do if btest(p, i) then begin msb := i; break; end; maxk := 16384 div p; // limit for k to prevent overflow of 32 bit signed integer for k := 1 to maxk do begin q := 2*p*k + 1; if not isprime(q) then continue; if ((q mod 8) <> 1) and ((q mod 8) <> 7) then continue; n := 1; for i := msb downto 0 do if btest(p, i) then n := (n*n*2) mod q else n := (n*n) mod q; if n = 1 then begin mfactor := q; exit; end; end; mfactor := 0; end;   var exponent, factor: longint;   begin write('Enter the exponent of the Mersenne number (suggestion: 929): '); readln(exponent); if not isPrime(exponent) then begin writeln('M', exponent, ' (2**', exponent, ' - 1) is not prime.'); exit; end; factor := MFactor(exponent); if factor = 0 then writeln('M', exponent, ' (2**', exponent, ' - 1) has no factor.') else writeln('M', exponent, ' (2**', exponent, ' - 1) has the factor: ', factor); end.
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Scheme
Scheme
  (import (scheme base) (scheme write))   ;; create a generator for Farey sequence n ;; using next term formula from https://en.wikipedia.org/wiki/Farey_sequence (define (farey-generator n) (let ((a #f) (b 1) (c #f) (d n)) (lambda () (cond ((not a) ; first item in sequence (set! a 0) (/ a b)) ((not c) ; second item in sequence (set! c 1) (/ c d)) ((= c d) ; return #f when finished sequence #f) (else ; compute next term (let* ((f (floor (/ (+ n b) d))) (p (- (* f c) a)) (q (- (* f d) b))) (set! a c) (set! b d) (set! c p) (set! d q) (/ p q)))))))   (define (farey-sequence n display?) (define (display-rat n) ; ensure 0,1 show /1 (display n) (when (= 1 (denominator n)) (display "/1")) (display " ")) ; (let ((gen (farey-generator n))) (do ((res (gen) (gen)) (count 0 (+ 1 count))) ((not res) (when display? (newline)) count) (when display? (display-rat res)))))   ;;   (display "Farey sequence for order 1 through 11 (inclusive):\n") (do ((i 1 (+ i 1))) ((> i 11) ) (display (string-append "F(" (number->string i) "): ")) (farey-sequence i #t))   (display "\nNumber of fractions in the Farey sequence:\n") (do ((i 100 (+ i 100))) ((> i 1000) ) (display (string-append "F(" (number->string i) ") = " (number->string (farey-sequence i #f)))) (newline))  
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#JavaScript
JavaScript
function fib(arity, len) { return nacci(nacci([1,1], arity, arity), arity, len); }   function lucas(arity, len) { return nacci(nacci([2,1], arity, arity), arity, len); }   function nacci(a, arity, len) { while (a.length < len) { var sum = 0; for (var i = Math.max(0, a.length - arity); i < a.length; i++) sum += a[i]; a.push(sum); } return a; }   function main() { for (var arity = 2; arity <= 10; arity++) console.log("fib(" + arity + "): " + fib(arity, 15)); for (var arity = 2; arity <= 10; arity++) console.log("lucas(" + arity + "): " + lucas(arity, 15)); }   main();
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Java
Java
int[] array = {1, 2, 3, 4, 5 }; List<Integer> evensList = new ArrayList<Integer>(); for (int i: array) { if (i % 2 == 0) evensList.add(i); } int[] evens = evensList.toArray(new int[0]);
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Kaya
Kaya
// fizzbuzz in Kaya program fizzbuzz;   Void fizzbuzz(Int size) { for i in [1..size] { if (i % 15 == 0) { putStrLn("FizzBuzz"); } else if (i % 5 == 0) { putStrLn("Buzz"); } else if (i % 3 == 0) { putStrLn("Fizz"); } else { putStrLn( string(i) ); } } }   Void main() { fizzbuzz(100); }
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#PL.2FI
PL/I
  declare in file, out file;   open file (in) title ('/INPUT.TXT,type(text),recsize(100)') input; open file (out) title ('/OUTPUT.TXT,type(text),recsize(100') output; do forever; get file (in) edit (line) (L); put file (out) edit (line) (A); end;  
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Pop11
Pop11
lvars i_stream = discin('input.txt'); lvars o_stream = discout('output.txt'); lvars c; while (i_stream() ->> c) /= termin do o_stream(c); endwhile;
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#ARM_Assembly
ARM Assembly
fibonacci: push {r1-r3} mov r1, #0 mov r2, #1   fibloop: mov r3, r2 add r2, r1, r2 mov r1, r3 sub r0, r0, #1 cmp r0, #1 bne fibloop   mov r0, r2 pop {r1-r3} mov pc, lr
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Burlesque
Burlesque
blsq ) 32767 fc {1 7 31 151 217 1057 4681 32767}
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Liberty_BASIC
Liberty BASIC
  P =8 S =int( log( P) /log( 2) +0.9999)   Pi =3.14159265 R1 =2^S   R =R1 -1 R2 =div( R1, 2) R4 =div( R1, 4) R3 =R4 +R2   Dim Re( R1), Im( R1), Co( R3)   for N =0 to P -1 read dummy: Re( N) =dummy read dummy: Im( N) =dummy next N   data 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0   S2 =div( S, 2) S1 =S -S2 P1 =2^S1 P2 =2^S2   dim V( P1 -1) V( 0) =0 DV =1 DP =P1   for J =1 to S1 HA =div( DP, 2) PT =P1 -HA for I =HA to PT step DP V( I) =V( I -HA) +DV next I DV =DV +DV DP =HA next J   K =2 *Pi /R1   for X =0 to R4 COX =cos( K *X) Co( X) =COX Co( R2 -X) =0 -COX Co( R2 +X) =0 -COX next X   print "FFT: bit reversal"   for I =0 to P1 -1 IP =I *P2 for J =0 to P2 -1 H =IP +J G =V( J) *P2 +V( I) if G >H then temp =Re( G): Re( G) =Re( H): Re( H) =temp if G >H then temp =Im( G): Im( G) =Im( H): Im( H) =temp next J next I   T =1   for stage =0 to S -1 print " Stage:- "; stage D =div( R2, T) for Z =0 to T -1 L =D *Z LS =L +R4 for I =0 to D -1 A =2 *I *T +Z B =A +T F1 =Re( A) F2 =Im( A) P1 =Co( L) *Re( B) P2 =Co( LS) *Im( B) P3 =Co( LS) *Re( B) P4 =Co( L) *Im( B) Re( A) =F1 +P1 -P2 Im( A) =F2 +P3 +P4 Re( B) =F1 -P1 +P2 Im( B) =F2 -P3 -P4 next I next Z T =T +T next stage   print " M Re( M) Im( M)"   for M =0 to R if abs( Re( M)) <10^-5 then Re( M) =0 if abs( Im( M)) <10^-5 then Im( M) =0 print " "; M, Re( M), Im( M) next M   end     wait   function div( a, b) div =int( a /b) end function   end  
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Perl
Perl
use strict; use utf8;   sub factors { my $n = shift; my $p = 2; my @out;   while ($n >= $p * $p) { while ($n % $p == 0) { push @out, $p; $n /= $p; } $p = next_prime($p); } push @out, $n if $n > 1 || !@out; @out; }   sub next_prime { my $p = shift; do { $p = $p == 2 ? 3 : $p + 2 } until is_prime($p); $p; }   my %pcache; sub is_prime { my $x = shift; $pcache{$x} //= (factors($x) == 1) }   sub mtest { my @bits = split "", sprintf("%b", shift); my $p = shift; my $sq = 1; while (@bits) { $sq = $sq * $sq; $sq *= 2 if shift @bits; $sq %= $p; } $sq == 1; }   for my $m (2 .. 60, 929) { next unless is_prime($m); use bigint;   my ($f, $k, $x) = (0, 0, 2**$m - 1);   my $q; while (++$k) { $q = 2 * $k * $m + 1; next if (($q & 7) != 1 && ($q & 7) != 7); next unless is_prime($q); last if $q * $q > $x; last if $f = mtest($m, $q); }   print $f? "M$m = $x = $q × @{[$x / $q]}\n" : "M$m = $x is prime\n"; }
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Sidef
Sidef
func farey_count(n) { # A005728 1 + sum(1..n, {|k| euler_phi(k) }) }   func farey(n) {   var seq = [0] var (a,b,c,d) = (0,1,1,n)   while (c <= n) { var k = (n+b)//d (a,b,c,d) = (c, d, k*c - a, k*d - b) seq << a/b }   return seq }   say "Farey sequence for order 1 through 11 (inclusive):" for n in (1..11) { say("F(%2d): %s" % (n, farey(n).map{.as_frac}.join(" "))) }   say "\nNumber of fractions in the Farey sequence:" for n in (100..1000 -> by(100)) { say ("F(%4d) =%7d" % (n, farey_count(n))) }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#jq
jq
# Input: the initial array def nacci(arity; len): arity as $arity | len as $len | reduce range(length; $len) as $i (.; ([0, (length - $arity)] | max ) as $lower | . + [ .[ ($lower) : length] | add] ) ;   def fib(arity; len): arity as $arity | len as $len | [1,1] | nacci($arity; $arity) | nacci($arity; $len) ;   def lucas(arity; len): arity as $arity | len as $len | [2,1] | nacci($arity; $arity) | nacci($arity; $len) ;
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#JavaFX_Script
JavaFX Script
def array = [1..100]; def evens = array[n | n mod 2 == 0];
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#KL1
KL1
  :- module main.   main :- nats(100, Nats), fizzbuzz(Nats, Output), display(Output).   nats(Max, Out) :- nats(Max, 1, Out). nats(Max, Count, Out) :- Count =< Max | Out = [Count|NewOut], NewCount := Count + 1, nats(Max, NewCount, NewOut). nats(Max, Count, Out) :- Count > Max | Out = [].   fizzbuzz([N|Rest], Out) :- N mod 3 =:= 0, N mod 5 =:= 0 | Out = ['FizzBuzz' | NewOut], fizzbuzz(Rest, NewOut). fizzbuzz([], Out) :- Out = []. alternatively. fizzbuzz([N|Rest], Out) :- N mod 3 =:= 0 | Out = ['Fizz' | NewOut], fizzbuzz(Rest, NewOut). fizzbuzz([N|Rest], Out) :- N mod 5 =:= 0 | Out = ['Buzz' | NewOut], fizzbuzz(Rest, NewOut). alternatively. fizzbuzz([N|Rest], Out) :- Out = [N | NewOut], fizzbuzz(Rest, NewOut).   display([Message|Rest]) :- io:outstream([print(Message), nl]), display(Rest). display([]).  
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#PowerShell
PowerShell
Get-Content $PWD\input.txt | Out-File $PWD\output.txt
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#PureBasic
PureBasic
CopyFile("input.txt","output.txt")
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#ArnoldC
ArnoldC
IT'S SHOWTIME   HEY CHRISTMAS TREE f1 YOU SET US UP @I LIED TALK TO THE HAND f1   HEY CHRISTMAS TREE f2 YOU SET US UP @NO PROBLEMO   HEY CHRISTMAS TREE f3 YOU SET US UP @I LIED   STICK AROUND @NO PROBLEMO   GET TO THE CHOPPER f3 HERE IS MY INVITATION f1 GET UP f2 ENOUGH TALK TALK TO THE HAND f3   GET TO THE CHOPPER f1 HERE IS MY INVITATION f2 ENOUGH TALK   GET TO THE CHOPPER f2 HERE IS MY INVITATION f3 ENOUGH TALK   CHILL   YOU HAVE BEEN TERMINATED
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#C
C
#include <stdio.h> #include <stdlib.h>   typedef struct { int *list; short count; } Factors;   void xferFactors( Factors *fctrs, int *flist, int flix ) { int ix, ij; int newSize = fctrs->count + flix; if (newSize > flix) { fctrs->list = realloc( fctrs->list, newSize * sizeof(int)); } else { fctrs->list = malloc( newSize * sizeof(int)); } for (ij=0,ix=fctrs->count; ix<newSize; ij++,ix++) { fctrs->list[ix] = flist[ij]; } fctrs->count = newSize; }   Factors *factor( int num, Factors *fctrs) { int flist[301], flix; int dvsr; flix = 0; fctrs->count = 0; free(fctrs->list); fctrs->list = NULL; for (dvsr=1; dvsr*dvsr < num; dvsr++) { if (num % dvsr != 0) continue; if ( flix == 300) { xferFactors( fctrs, flist, flix ); flix = 0; } flist[flix++] = dvsr; flist[flix++] = num/dvsr; } if (dvsr*dvsr == num) flist[flix++] = dvsr; if (flix > 0) xferFactors( fctrs, flist, flix );   return fctrs; }   int main(int argc, char*argv[]) { int nums2factor[] = { 2059, 223092870, 3135, 45 }; Factors ftors = { NULL, 0}; char sep; int i,j;   for (i=0; i<4; i++) { factor( nums2factor[i], &ftors ); printf("\nfactors of %d are:\n ", nums2factor[i]); sep = ' '; for (j=0; j<ftors.count; j++) { printf("%c %d", sep, ftors.list[j]); sep = ','; } printf("\n"); } return 0; }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Lua
Lua
-- operations on complex number complex = {__mt={} }   function complex.new (r, i) local new={r=r, i=i or 0} setmetatable(new,complex.__mt) return new end   function complex.__mt.__add (c1, c2) return complex.new(c1.r + c2.r, c1.i + c2.i) end   function complex.__mt.__sub (c1, c2) return complex.new(c1.r - c2.r, c1.i - c2.i) end   function complex.__mt.__mul (c1, c2) return complex.new(c1.r*c2.r - c1.i*c2.i, c1.r*c2.i + c1.i*c2.r) end   function complex.expi (i) return complex.new(math.cos(i),math.sin(i)) end   function complex.__mt.__tostring(c) return "("..c.r..","..c.i..")" end     -- Cooley–Tukey FFT (in-place, divide-and-conquer) -- Higher memory requirements and redundancy although more intuitive function fft(vect) local n=#vect if n<=1 then return vect end -- divide local odd,even={},{} for i=1,n,2 do odd[#odd+1]=vect[i] even[#even+1]=vect[i+1] end -- conquer fft(even); fft(odd); -- combine for k=1,n/2 do local t=even[k] * complex.expi(-2*math.pi*(k-1)/n) vect[k] = odd[k] + t; vect[k+n/2] = odd[k] - t; end return vect end   function toComplex(vectr) vect={} for i,r in ipairs(vectr) do vect[i]=complex.new(r) end return vect end   -- test data = toComplex{1, 1, 1, 1, 0, 0, 0, 0};   -- this works for old lua versions & luaJIT (depends on version!) -- print("orig:", unpack(data)) -- print("fft:", unpack(fft(data)))   -- Beginning with Lua 5.2 you have to write print("orig:", table.unpack(data)) print("fft:", table.unpack(fft(data)))
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Phix
Phix
with javascript_semantics function modpow(atom x, atom n, atom m) atom i = n, y = 1, z = x while i do if and_bits(i,1) then y = mod(y*z,m) end if z = mod(z*z,m) i = floor(i/2) end while return y end function function mersenne_factor(integer p) if not is_prime(p) then return -1 end if atom limit = sqrt(power(2,p))-1 integer k = 1 while 1 do atom q = 2*p*k + 1 if q>=limit then exit end if if find(mod(q,8),{1,7}) and is_prime(q) and modpow(2,p,q)=1 then return q end if k += 1 end while return 0 end function sequence tests = {11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929, 937} for i=1 to length(tests) do integer ti = tests[i] printf(1,"A factor of M%d is %d\n",{ti,mersenne_factor(ti)}) end for
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Stata
Stata
mata function totient(n_) { n = n_ if (n<4) { if (n<1) return(.) else if (n>1) return(n-1) else return(1) } else { r = 1 if (mod(n,2)==0) { n = floor(n/2) while (mod(n,2)==0) { n = floor(n/2) r = r*2 } } for (k=3; k*k<=n; k=k+2) { if (mod(n,k)==0) { r = r*(k-1) n = floor(n/k) while (mod(n,k)==0) { n = floor(n/k) r = r*k } } } if (n>1) r = r*(n-1) return(r) } }   function map(f,a) { n = rows(a) p = cols(a) b = J(n,p,.) for (i=1; i<=n; i++) { for (j=1; j<=p; j++) { b[i,j] = (*f)(a[i,j]) } } return(b) }   function farey_length(n) { return(1+sum(map(&totient(),1::n))) }   function farey(n) { m = 1+sum(map(&totient(),1::n)) r = J(m,2,.) r[1,.] = 0,1 a = 0 b = 1 c = 1 d = n i = 1 while (c<=n) { k = floor((n+b)/d) a = k*c-a b = k*d-b swap(a,c) swap(b,d) r[++i,.] = a,b } return(r) }   for (n=1; n<=11; n++) { a = farey(n) m = rows(a) for (i=1; i<=m; i++) printf("%f/%f ",a[i,1],a[i,2]) printf("\n") }   map(&farey_length(),100*(1..10)) end
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Swift
Swift
class Farey { let n: Int   init(_ x: Int) { n = x }   //using algorithm from wikipedia var sequence: [(Int,Int)] { var a = 0 var b = 1 var c = 1 var d = n var results = [(a, b)] while c <= n { let k = (n + b) / d let oldA = a let oldB = b a = c b = d c = k * c - oldA d = k * d - oldB results += [(a, b)] } return results }   var formattedSequence: String { var s = "\(n):" for pair in sequence { s += " \(pair.0)/\(pair.1)" } return s }   }   print("Sequences\n")   for n in 1...11 { print(Farey(n).formattedSequence) }   print("\nSequence Lengths\n")   for n in 1...10 { let m = n * 100 print("\(m): \(Farey(m).sequence.count)") }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Julia
Julia
  type NFib{T<:Integer} n::T klim::T seeder::Function end   type FState a::Array{BigInt,1} adex::Integer k::Integer end   function Base.start{T<:Integer}(nf::NFib{T}) a = nf.seeder(nf.n) adex = 1 k = 1 return FState(a, adex, k) end   function Base.done{T<:Integer}(nf::NFib{T}, fs::FState) fs.k > nf.klim end   function Base.next{T<:Integer}(nf::NFib{T}, fs::FState) f = sum(fs.a) fs.a[fs.adex] = f fs.adex = rem1(fs.adex+1, nf.n) fs.k += 1 return (f, fs) end  
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#JavaScript
JavaScript
var arr = [1,2,3,4,5]; var evens = arr.filter(function(a) {return a % 2 == 0});
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Klong
Klong
  {:[0=x!15;:FizzBuzz:|0=x!5;:Buzz:|0=x!3;:Fizz;x]}'1+!100  
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Python
Python
import shutil shutil.copyfile('input.txt', 'output.txt')
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Quackery
Quackery
$ "input.txt" sharefile drop temp put temp share $ "output.txt" putfile drop  
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Arturo
Arturo
fib: $[x][ if? x<2 [1] else [(fib x-1) + (fib x-2)] ]   loop 1..25 [x][ print ["Fibonacci of" x "=" fib x] ]
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#C.23
C#
static void Main (string[] args) { do { Console.WriteLine ("Number:"); Int64 p = 0; do { try { p = Convert.ToInt64 (Console.ReadLine ()); break; } catch (Exception) { }   } while (true);   Console.WriteLine ("For 1 through " + ((int) Math.Sqrt (p)).ToString () + ""); for (int x = 1; x <= (int) Math.Sqrt (p); x++) { if (p % x == 0) Console.WriteLine ("Found: " + x.ToString () + ". " + p.ToString () + " / " + x.ToString () + " = " + (p / x).ToString ()); }   Console.WriteLine ("Done."); } while (true); }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Maple
Maple
  with( DiscreteTransforms ):   FourierTransform( <1,1,1,1,0,0,0,0>, normalization=none );  
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#PHP
PHP
echo 'M929 has a factor: ', mersenneFactor(929), '</br>';   function mersenneFactor($p) { $limit = sqrt(pow(2, $p) - 1); for ($k = 1; 2 * $p * $k - 1 < $limit; $k++) { $q = 2 * $p * $k + 1; if (isPrime($q) && ($q % 8 == 1 || $q % 8 == 7) && bcpowmod("2", "$p", "$q") == "1") { return $q; } } return 0; }   function isPrime($n) { if ($n < 2 || $n % 2 == 0) return $n == 2; for ($i = 3; $i * $i <= $n; $i += 2) { if ($n % $i == 0) { return false; } } return true; }
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Tcl
Tcl
package require Tcl 8.6   proc farey {n} { set nums [lrepeat [expr {$n+1}] 1] set result {{0 1}} for {set found 1} {$found} {} { set nj [lindex $nums [set j 1]] for {set found 0;set i 1} {$i <= $n} {incr i} { if {[lindex $nums $i]*$j < $nj*$i} { set nj [lindex $nums [set j $i]] set found 1 } } lappend result [list $nj $j] for {set i $j} {$i <= $n} {incr i $j} { lset nums $i [expr {[lindex $nums $i] + 1}] } } return $result }   for {set i 1} {$i <= 11} {incr i} { puts F($i):\x20[lmap n [farey $i] {join $n /}] } for {set i 100} {$i <= 1000} {incr i 100} { puts |F($i)|\x20=\x20[llength [farey $i]] }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Kotlin
Kotlin
// version 1.1.2   fun fibN(initial: IntArray, numTerms: Int) : IntArray { val n = initial.size require(n >= 2 && numTerms >= 0) val fibs = initial.copyOf(numTerms) if (numTerms <= n) return fibs for (i in n until numTerms) { var sum = 0 for (j in i - n until i) sum += fibs[j] fibs[i] = sum } return fibs }   fun main(args: Array<String>) { val names = arrayOf("fibonacci", "tribonacci", "tetranacci", "pentanacci", "hexanacci", "heptanacci", "octonacci", "nonanacci", "decanacci") val initial = intArrayOf(1, 1, 2, 4, 8, 16, 32, 64, 128, 256) println(" n name values") var values = fibN(intArrayOf(2, 1), 15).joinToString(", ") println("%2d  %-10s  %s".format(2, "lucas", values)) for (i in 0..8) { values = fibN(initial.sliceArray(0 until i + 2), 15).joinToString(", ") println("%2d  %-10s  %s".format(i + 2, names[i], values)) } }
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#jq
jq
(1,2,3,4,5,6,7,8,9) | select(. % 2 == 0)
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#Kotlin
Kotlin
fun fizzBuzz() { for (number in 1..100) { println( when { number % 15 == 0 -> "FizzBuzz" number % 3 == 0 -> "Fizz" number % 5 == 0 -> "Buzz" else -> number } ) } }
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#R
R
src <- file("input.txt", "r") dest <- file("output.txt", "w")   fc <- readLines(src, -1) writeLines(fc, dest) close(src); close(dest)
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Racket
Racket
#lang racket (define file-content (with-input-from-file "input.txt" (lambda () (let loop ((lst null)) (define new (read-char)) (if (eof-object? new) (apply string lst) (loop (append lst (list new))))))))   (with-output-to-file "output.txt" (lambda () (write file-content)))
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#AsciiDots
AsciiDots
    /--#$--\ | | >-*>{+}/ | \+-/ 1 | # 1 | # | | . .    
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#C.2B.2B
C++
#include <iostream> #include <iomanip> #include <vector> #include <algorithm> #include <iterator>   std::vector<int> GenerateFactors(int n) { std::vector<int> factors = { 1, n }; for (int i = 2; i * i <= n; ++i) { if (n % i == 0) { factors.push_back(i); if (i * i != n) factors.push_back(n / i); } }   std::sort(factors.begin(), factors.end()); return factors; }   int main() { const int SampleNumbers[] = { 3135, 45, 60, 81 };   for (size_t i = 0; i < sizeof(SampleNumbers) / sizeof(int); ++i) { std::vector<int> factors = GenerateFactors(SampleNumbers[i]); std::cout << "Factors of "; std::cout.width(4); std::cout << SampleNumbers[i] << " are: "; std::copy(factors.begin(), factors.end(), std::ostream_iterator<int>(std::cout, " ")); std::cout << std::endl; }   return EXIT_SUCCESS; }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
  Fourier[{1,1,1,1,0,0,0,0}, FourierParameters->{1,-1}]  
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#PicoLisp
PicoLisp
(de **Mod (X Y N) (let M 1 (loop (when (bit? 1 Y) (setq M (% (* M X) N)) ) (T (=0 (setq Y (>> 1 Y))) M ) (setq X (% (* X X) N)) ) ) )   (de prime? (N) (or (= N 2) (and (> N 1) (bit? 1 N) (let S (sqrt N) (for (D 3 T (+ D 2)) (T (> D S) T) (T (=0 (% N D)) NIL) ) ) ) ) )   (de mFactor (P) (let (Lim (sqrt (dec (** 2 P))) K 0 Q) (loop (setq Q (inc (* 2 (inc 'K) P))) (T (>= Q Lim) NIL) (T (and (member (% Q 8) (1 7)) (prime? Q) (= 1 (**Mod 2 P Q)) ) Q ) ) ) )
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Prolog
Prolog
  mersenne_factor(P, F) :- prime(P), once(( between(1, 100_000, K), % Fail if we can't find a small factor Q is 2*K*P + 1, test_factor(Q, P, F))).   test_factor(Q, P, prime) :- Q*Q > (1 << P - 1), !. test_factor(Q, P, Q) :- R is Q /\ 7, member(R, [1, 7]), prime(Q), powm(2, P, Q) =:= 1.     wheel235(L) :- W = [4, 2, 4, 2, 4, 6, 2, 6 | W], L = [1, 2, 2 | W].   prime(N) :- N >= 2, wheel235(W), prime(N, 2, W).   prime(N, D, _) :- D*D > N, !. prime(N, D, [A|As]) :- N mod D =\= 0, D2 is D + A, prime(N, D2, As).  
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Vala
Vala
struct Fraction { public uint d; public uint n; }   void farey(uint n) { Fraction f1 = {0, 1}; Fraction f2 = {1, n}; print("0/1 1/%u ", n); while (f2.n > 1) { var k = (n + f1.n) / f2.n; var aux = f1; f1 = f2; f2 = {f2.d * k - aux.d, f2.n * k - aux.n}; print("%u/%u ", f2.d, f2.n); } print("\n"); }   uint fareyLength(uint n, uint[] cache) { if (n >= cache.length) { uint newLen = cache.length; if (newLen == 0) newLen = 16; while (newLen <= n) newLen *= 2; cache.resize((int)newLen); } else if (cache[n] != 0) return cache[n];   uint length = n * (n + 3) / 2; for (uint p = 2, q = 2; p <= n; p = q) { q = n / (n / p) + 1; length -= fareyLength(n / p, cache) * (q - p); }   cache[n] = length; return length; }   void main() { for (uint n = 1; n < 12; n++) { print("%8u: ", n); farey(n); }   uint[] cache = new uint[0]; for (uint n = 100; n <= 1000; n += 100) print("%8u: %14u items\n", n, fareyLength(n, cache)); }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Lua
Lua
function nStepFibs (seq, limit) local iMax, sum = #seq - 1 while #seq < limit do sum = 0 for i = 0, iMax do sum = sum + seq[#seq - i] end table.insert(seq, sum) end return seq end   local fibSeqs = { {name = "Fibonacci", values = {1, 1} }, {name = "Tribonacci", values = {1, 1, 2} }, {name = "Tetranacci", values = {1, 1, 2, 4}}, {name = "Lucas", values = {2, 1} } } for _, sequence in pairs(fibSeqs) do io.write(sequence.name .. ": ") print(table.concat(nStepFibs(sequence.values, 10), " ")) end
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Julia
Julia
@show filter(iseven, 1:10)
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#KQL
KQL
  range i from 1 to 100 step 1 | project Result = case( i % 15 == 0, "FizzBuzz", i % 3 == 0, "Fizz", i % 5 == 0, "Buzz", tostring(i) )  
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Raku
Raku
spurt "output.txt", slurp "input.txt";
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#RapidQ
RapidQ
$INCLUDE "rapidq.inc"   DIM File1 AS QFileStream DIM File2 AS QFileStream   File1.Open("input.txt", fmOpenRead) File2.Open("output.txt", fmCreate)   WHILE NOT File1.EOF data$ = File1.ReadLine File2.WriteLine(data$) WEND   File1.Close File2.Close
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#ATS
ATS
  fun fib_rec(n: int): int = if n >= 2 then fib_rec(n-1) + fib_rec(n-2) else n  
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Ceylon
Ceylon
shared void run() { {Integer*} getFactors(Integer n) => (1..n).filter((Integer element) => element.divides(n));   for(Integer i in 1..100) { print("the factors of ``i`` are ``getFactors(i)``"); } }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#MATLAB_.2F_Octave
MATLAB / Octave
fft([1,1,1,1,0,0,0,0]')  
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Python
Python
def is_prime(number): return True # code omitted - see Primality by Trial Division   def m_factor(p): max_k = 16384 / p # arbitrary limit; since Python automatically uses long's, it doesn't overflow for k in xrange(max_k): q = 2*p*k + 1 if not is_prime(q): continue elif q % 8 != 1 and q % 8 != 7: continue elif pow(2, p, q) == 1: return q return None   if __name__ == '__main__': exponent = int(raw_input("Enter exponent of Mersenne number: ")) if not is_prime(exponent): print "Exponent is not prime: %d" % exponent else: factor = m_factor(exponent) if not factor: print "No factor found for M%d" % exponent else: print "M%d has a factor: %d" % (exponent, factor)
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Racket
Racket
  #lang racket   (define (number->digits n) (map (compose1 string->number string) (string->list (number->string n 2))))   (define (modpow exp base) (for/fold ([square 1]) ([d (number->digits exp)]) (modulo (* (if (= d 1) 2 1) square square) base)))   ; Search through all integers from 1 on to find the first divisor. ; Returns #f if 2^p-1 is prime. (define (mersenne-factor p) (for/first ([i (in-range 1 (floor (expt 2 (quotient p 2))) (* 2 p))] #:when (and (member (modulo i 8) '(1 7)) (= 1 (modpow p i)))) i))   (mersenne-factor 929)  
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Vlang
Vlang
struct Frac { num int den int }   fn (f Frac) str() string { return "$f.num/$f.den" }   fn f(l Frac, r Frac, n int) { m := Frac{l.num + r.num, l.den + r.den} if m.den <= n { f(l, m, n) print("$m ") f(m, r, n) } }   fn main() { // task 1. solution by recursive generation of mediants for n := 1; n <= 11; n++ { l := Frac{0, 1} r := Frac{1, 1} print("F($n): $l ") f(l, r, n) println(r) } // task 2. direct solution by summing totient fntion // 2.1 generate primes to 1000 mut composite := [1001]bool{} for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31] { for n := p * 2; n <= 1000; n += p { composite[n] = true } } // 2.2 generate totients to 1000 mut tot := [1001]int{init: 1} for n := 2; n <= 1000; n++ { if !composite[n] { tot[n] = n - 1 for a := n * 2; a <= 1000; a += n { mut f := n - 1 for r := a / n; r%n == 0; r /= n { f *= n } tot[a] *= f } } } // 2.3 sum totients for n, sum := 1, 1; n <= 1000; n++ { sum += tot[n] if n%100 == 0 { println("|F($n)|: $sum") } } }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Maple
Maple
numSequence := proc(initValues :: Array) local n, i, values; n := numelems(initValues); values := copy(initValues); for i from (n+1) to 15 do values(i) := add(values[i-n..i-1]); end do; return values; end proc:   initValues := Array([1]): for i from 2 to 10 do initValues(i) := add(initValues): printf ("nacci(%d): %a\n", i, convert(numSequence(initValues), list)); end do: printf ("lucas: %a\n", convert(numSequence(Array([2, 1])), list));
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#K
K
/ even is a boolean function even:{0=x!2} even 1 2 3 4 5 0 1 0 1 0   / filtering the even numbers a@&even'a:1+!10 2 4 6 8 10   / as a function evens:{x@&even'x} a:10?100 45 5 79 77 44 15 83 88 33 99 evens a 44 88
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#KSI
KSI
  `plain [1 100] `for pos : n ~ out = [] n `mod 3 == 0 ? out.# = 'Fizz' ; n `mod 5 == 0 ? out.# = 'Buzz' ; (out `or n) #write_ln # ;  
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#Raven
Raven
'input.txt' read 'output.txt' write
http://rosettacode.org/wiki/File_input/output
File input/output
File input/output is part of Short Circuit's Console Program Basics selection. Task Create a file called   "output.txt",   and place in it the contents of the file   "input.txt",   via an intermediate variable. In other words, your program will demonstrate:   how to read from a file into a variable   how to write a variable's contents into a file Oneliners that skip the intermediate variable are of secondary interest — operating systems have copy commands for that.
#REALbasic
REALbasic
  Sub WriteToFile(input As FolderItem, output As FolderItem) Dim tis As TextInputStream Dim tos As TextOutputStream tis = tis.Open(input) tos = tos.Create(output) While Not tis.EOF tos.WriteLine(tis.ReadLine) Wend tis.Close tos.Close End Sub  
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#AutoHotkey
AutoHotkey
Loop, 5 MsgBox % fib(A_Index) Return   fib(n) { If (n < 2) Return n i := last := this := 1 While (i <= n) { new := last + this last := this this := new i++ } Return this }
http://rosettacode.org/wiki/Factors_of_an_integer
Factors of an integer
Basic Data Operation This is a basic data operation. It represents a fundamental action on a basic data type. You may see other such operations in the Basic Data Operations category, or: Integer Operations Arithmetic | Comparison Boolean Operations Bitwise | Logical String Operations Concatenation | Interpolation | Comparison | Matching Memory Operations Pointers & references | Addresses Task Compute the   factors   of a positive integer. These factors are the positive integers by which the number being factored can be divided to yield a positive integer result. (Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases). Note that every prime number has two factors:   1   and itself. Related tasks   count in factors   prime decomposition   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division   sequence: smallest number greater than previous term with exactly n divisors
#Chapel
Chapel
iter factors(n) { for i in 1..floor(sqrt(n)):int { if n % i == 0 then { yield i; yield n / i; } } }
http://rosettacode.org/wiki/Fast_Fourier_transform
Fast Fourier transform
Task Calculate the   FFT   (Fast Fourier Transform)   of an input sequence. The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result. The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.
#Maxima
Maxima
load(fft)$ fft([1, 2, 3, 4]); [2.5, -0.5 * %i - 0.5, -0.5, 0.5 * %i - 0.5]
http://rosettacode.org/wiki/Factors_of_a_Mersenne_number
Factors of a Mersenne number
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: remove optional square top bit multiply by 2 mod 47 ──────────── ─────── ───────────── ────── 1*1 = 1 1 0111 1*2 = 2 2 2*2 = 4 0 111 no 4 4*4 = 16 1 11 16*2 = 32 32 32*32 = 1024 1 1 1024*2 = 2048 27 27*27 = 729 1 729*2 = 1458 1 Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1. Task Using the above method find a factor of 2929-1 (aka M929) Related tasks   count in factors   prime decomposition   factors of an integer   Sieve of Eratosthenes   primality by trial division   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division See also   Computers in 1948: 2127 - 1       (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)
#Raku
Raku
sub mtest($bits, $p) { my @bits = $bits.base(2).comb; loop (my $sq = 1; @bits; $sq %= $p) { $sq ×= $sq; $sq += $sq if 1 == @bits.shift; } $sq == 1; }   for flat 2 .. 60, 929 -> $m { next unless is-prime($m); my $f = 0; my $x = 2**$m - 1; my $q; for 1..* -> $k { $q = 2 × $k × $m + 1; next unless $q % 8 == 1|7 or is-prime($q); last if $q × $q > $x or $f = mtest($m, $q); }   say $f ?? "M$m = $x\n\t= $q × { $x div $q }" !! "M$m = $x is prime"; }
http://rosettacode.org/wiki/Farey_sequence
Farey sequence
The   Farey sequence   Fn   of order   n   is the sequence of completely reduced fractions between   0   and   1   which, when in lowest terms, have denominators less than or equal to   n,   arranged in order of increasing size. The   Farey sequence   is sometimes incorrectly called a   Farey series. Each Farey sequence:   starts with the value   0   (zero),   denoted by the fraction     0 1 {\displaystyle {\frac {0}{1}}}   ends with the value   1   (unity),   denoted by the fraction   1 1 {\displaystyle {\frac {1}{1}}} . The Farey sequences of orders   1   to   5   are: F 1 = 0 1 , 1 1 {\displaystyle {\bf {\it {F}}}_{1}={\frac {0}{1}},{\frac {1}{1}}} F 2 = 0 1 , 1 2 , 1 1 {\displaystyle {\bf {\it {F}}}_{2}={\frac {0}{1}},{\frac {1}{2}},{\frac {1}{1}}} F 3 = 0 1 , 1 3 , 1 2 , 2 3 , 1 1 {\displaystyle {\bf {\it {F}}}_{3}={\frac {0}{1}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {1}{1}}} F 4 = 0 1 , 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , 1 1 {\displaystyle {\bf {\it {F}}}_{4}={\frac {0}{1}},{\frac {1}{4}},{\frac {1}{3}},{\frac {1}{2}},{\frac {2}{3}},{\frac {3}{4}},{\frac {1}{1}}} F 5 = 0 1 , 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 , 1 1 {\displaystyle {\bf {\it {F}}}_{5}={\frac {0}{1}},{\frac {1}{5}},{\frac {1}{4}},{\frac {1}{3}},{\frac {2}{5}},{\frac {1}{2}},{\frac {3}{5}},{\frac {2}{3}},{\frac {3}{4}},{\frac {4}{5}},{\frac {1}{1}}} Task   Compute and show the Farey sequence for orders   1   through   11   (inclusive).   Compute and display the   number   of fractions in the Farey sequence for order   100   through   1,000   (inclusive)   by hundreds.   Show the fractions as   n/d   (using the solidus [or slash] to separate the numerator from the denominator). The length   (the number of fractions)   of a Farey sequence asymptotically approaches: 3 × n2   ÷   π {\displaystyle \pi } 2 See also   OEIS sequence   A006842 numerators of Farey series of order 1, 2, ···   OEIS sequence   A006843 denominators of Farey series of order 1, 2, ···   OEIS sequence   A005728 number of fractions in Farey series of order n   MathWorld entry   Farey sequence   Wikipedia   entry   Farey sequence
#Wren
Wren
import "/math" for Int import "/trait" for Stepped import "/fmt" for Fmt import "/rat" for Rat   var f //recursive f = Fn.new { |l, r, n| var m = Rat.new(l.num + r.num, l.den + r.den) if (m.den <= n) { f.call(l, m, n) System.write("%(m) ") f.call(m, r, n) } }   /* Task 1: solution by recursive generation of mediants. */ for (n in 1..11) { var l = Rat.zero var r = Rat.one System.write("F(%(n)): %(l) ") f.call(l, r, n) System.print(r) } System.print()   /* Task 2: direct solution by summing totient function. */   // generate primes to 1000 var comp = Int.primeSieve(1001, false)   // generate totients to 1000 var tot = List.filled(1001, 1) for (n in 2..1000) { if (!comp[n]) { tot[n] = n - 1 for (a in Stepped.ascend(n*2..1000, n)) { var f = n - 1 var r = (a/n).floor while (r%n == 0) { f = f * n r = (r/n).floor } tot[a] = tot[a] * f } } }   // sum totients var sum = 1 for (n in 1..1000) { sum = sum + tot[n] if (n%100 == 0) System.print("F(%(Fmt.d(4, n))): %(Fmt.dc(7, sum))") }
http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences
Fibonacci n-step number sequences
These number series are an expansion of the ordinary Fibonacci sequence where: For n = 2 {\displaystyle n=2} we have the Fibonacci sequence; with initial values [ 1 , 1 ] {\displaystyle [1,1]} and F k 2 = F k − 1 2 + F k − 2 2 {\displaystyle F_{k}^{2}=F_{k-1}^{2}+F_{k-2}^{2}} For n = 3 {\displaystyle n=3} we have the tribonacci sequence; with initial values [ 1 , 1 , 2 ] {\displaystyle [1,1,2]} and F k 3 = F k − 1 3 + F k − 2 3 + F k − 3 3 {\displaystyle F_{k}^{3}=F_{k-1}^{3}+F_{k-2}^{3}+F_{k-3}^{3}} For n = 4 {\displaystyle n=4} we have the tetranacci sequence; with initial values [ 1 , 1 , 2 , 4 ] {\displaystyle [1,1,2,4]} and F k 4 = F k − 1 4 + F k − 2 4 + F k − 3 4 + F k − 4 4 {\displaystyle F_{k}^{4}=F_{k-1}^{4}+F_{k-2}^{4}+F_{k-3}^{4}+F_{k-4}^{4}} ... For general n > 2 {\displaystyle n>2} we have the Fibonacci n {\displaystyle n} -step sequence - F k n {\displaystyle F_{k}^{n}} ; with initial values of the first n {\displaystyle n} values of the ( n − 1 ) {\displaystyle (n-1)} 'th Fibonacci n {\displaystyle n} -step sequence F k n − 1 {\displaystyle F_{k}^{n-1}} ; and k {\displaystyle k} 'th value of this n {\displaystyle n} 'th sequence being F k n = ∑ i = 1 ( n ) F k − i ( n ) {\displaystyle F_{k}^{n}=\sum _{i=1}^{(n)}{F_{k-i}^{(n)}}} For small values of n {\displaystyle n} , Greek numeric prefixes are sometimes used to individually name each series. Fibonacci n {\displaystyle n} -step sequences n {\displaystyle n} Series name Values 2 fibonacci 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 3 tribonacci 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 ... 4 tetranacci 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 ... 5 pentanacci 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 ... 6 hexanacci 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 ... 7 heptanacci 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 ... 8 octonacci 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 ... 9 nonanacci 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 ... 10 decanacci 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 ... Allied sequences can be generated where the initial values are changed: The Lucas series sums the two preceding values like the fibonacci series for n = 2 {\displaystyle n=2} but uses [ 2 , 1 ] {\displaystyle [2,1]} as its initial values. Task Write a function to generate Fibonacci n {\displaystyle n} -step number sequences given its initial values and assuming the number of initial values determines how many previous values are summed to make the next number of the series. Use this to print and show here at least the first ten members of the Fibo/tribo/tetra-nacci and Lucas sequences. Related tasks   Fibonacci sequence   Wolfram Mathworld   Hofstadter Q sequence‎   Leonardo numbers Also see   Lucas Numbers - Numberphile (Video)   Tribonacci Numbers (and the Rauzy Fractal) - Numberphile (Video)   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
  f2=Function[{l,k}, Module[{n=Length@l,m}, m=SparseArray[{{i_,j_}/;i==1||i==j+1->1},{n,n}]; NestList[m.#&,l,k]]]; Table[Last/@f2[{1,1}~Join~Table[0,{n-2}],15+n][[-18;;]],{n,2,10}]//TableForm Table[Last/@f2[{1,2}~Join~Table[0,{n-2}],15+n][[-18;;]],{n,2,10}]//TableForm  
http://rosettacode.org/wiki/Filter
Filter
Task Select certain elements from an Array into a new Array in a generic way. To demonstrate, select all even numbers from an Array. As an option, give a second solution which filters destructively, by modifying the original Array rather than creating a new Array.
#Kotlin
Kotlin
// version 1.0.5-2   fun main(args: Array<String>) { val array = arrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9) println(array.joinToString(" "))   val filteredArray = array.filter{ it % 2 == 0 } println(filteredArray.joinToString(" "))   val mutableList = array.toMutableList() mutableList.retainAll { it % 2 == 0 } println(mutableList.joinToString(" ")) }
http://rosettacode.org/wiki/FizzBuzz
FizzBuzz
Task Write a program that prints the integers from   1   to   100   (inclusive). But:   for multiples of three,   print   Fizz     (instead of the number)   for multiples of five,   print   Buzz     (instead of the number)   for multiples of both three and five,   print   FizzBuzz     (instead of the number) The   FizzBuzz   problem was presented as the lowest level of comprehension required to illustrate adequacy. Also see   (a blog)   dont-overthink-fizzbuzz   (a blog)   fizzbuzz-the-programmers-stairway-to-heaven
#LabVIEW
LabVIEW
  1. direct:   {S.map {lambda {:i} {if {= {% :i 15} 0} then fizzbuzz else {if {= {% :i 3} 0} then fizz else {if {= {% :i 5} 0} then buzz else :i}}}} {S.serie 1 100}} -> 1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz 13 14 fizzbuzz 16 17 fizz 19 buzz fizz 22 23 fizz buzz 26 fizz 28 29 fizzbuzz 31 32 fizz 34 buzz fizz 37 38 fizz buzz 41 fizz 43 44 fizzbuzz 46 47 fizz 49 buzz fizz 52 53 fizz buzz 56 fizz 58 59 fizzbuzz 61 62 fizz 64 buzz fizz 67 68 fizz buzz 71 fizz 73 74 fizzbuzz 76 77 fizz 79 buzz fizz 82 83 fizz buzz 86 fizz 88 89 fizzbuzz 91 92 fizz 94 buzz fizz 97 98 fizz buzz   2. via a function   {def fizzbuzz {lambda {:i :n} {if {> :i :n} then . else {if {= {% :i 15} 0} then fizzbuzz else {if {= {% :i 3} 0} then fizz else {if {= {% :i 5} 0} then buzz else :i}}} {fizzbuzz {+ :i 1} :n} }}} -> fizzbuzz   {fizzbuzz 1 100} -> same as above.