File size: 2,134 Bytes
33e8a13
 
1d8a000
4e69905
33e8a13
 
 
 
 
 
 
 
 
 
 
c80d37d
33e8a13
 
49c1c71
 
 
 
33e8a13
49c1c71
 
 
33e8a13
 
 
 
4e69905
33e8a13
 
 
 
 
 
 
4e69905
33e8a13
4e69905
33e8a13
 
 
 
 
4e69905
33e8a13
 
36ba043
33e8a13
 
1d8a000
33e8a13
 
8681eb8
e834dbc
106245e
 
 
1d8a000
8681eb8
e8a8fda
2e62701
 
f39c917
 
106245e
2e62701
7b5cb9b
2e62701
 
09a6ad3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""ViHOS - Vietnamese Hate and Offensive Spans dataset"""

import pandas as pd

import datasets

_DESCRIPTION = """\
This is a dataset of Vietnamese Hate and Offensive Spans dataset from social media texts.
"""

_HOMEPAGE = "https://huggingface.co/datasets/phusroyal/ViHOS"

_LICENSE = "mit"

_URLS = [
    "https://huggingface.co/datasets/phusroyal/ViHOS/blob/main/train_span_extraction/train.csv"
]

class ViHOS_config(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(SquadV2Config, self).__init__(**kwargs)

class ViHOS(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        SquadV2Config(name="ViHOS", version=datasets.Version("2.0.0"), description=_DESCRIPTION),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "content": datasets.Value("string"),
                    "index_spans": datasets.Value("string")
                }
            ),
            
            homepage=_HOMEPAGE,
            
            license=_LICENSE
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS)
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir[0],
                    "split": "test",
                },
            )
        ]    
    def _generate_examples(self, filepath, split):
        colnames=['id', 'Content', 'Span ids']
        
        data = pd.read_csv(filepath, names=colnames, header=None, sep=",", on_bad_lines='skip')
        
        for i in range(len(data)):
            id_ = data.loc[i, 'id']
            content = str(data.loc[i, 'Content'])
            span_ids = str(data.loc[i, 'Span ids'])
            if span_ids is None:
                span_ids = ''
    
            yield id_, {
                "id": id_,
                "content": content,
                "span_ids": span_ids,
            }