Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
Hugging Face's logo | |
Hugging Face | |
Models | |
Datasets | |
Spaces | |
Community | |
Docs | |
Enterprise | |
Pricing | |
Datasets: | |
pianistprogrammer | |
/ | |
Meter2800 | |
like | |
0 | |
Tasks: | |
Audio Classification | |
Modalities: | |
Audio | |
Languages: | |
English | |
Tags: | |
audio | |
music-classification | |
meter-classification | |
multi-class-classification | |
multi-label-classification | |
License: | |
mit | |
Dataset card | |
Files and versions | |
Community | |
Settings | |
Meter2800 | |
/ | |
meter2800.py | |
pianistprogrammer's picture | |
pianistprogrammer | |
Refactor Meter2800 dataset configuration and example generation logic | |
ec015f3 | |
1 minute ago | |
raw | |
Copy download link | |
history | |
blame | |
edit | |
delete | |
4.2 kB | |
from pathlib import Path | |
import datasets | |
import pandas as pd | |
_CITATION = """\ | |
@misc{meter2800_dataset, | |
author = {PianistProgrammer}, | |
title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification}, | |
year = {2025}, | |
publisher = {Hugging Face}, | |
url = {https://huggingface.co/datasets/pianistprogrammer/Meter2800} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification. | |
Each audio file is annotated with a primary meter class label (e.g., 'two', 'three', 'four') | |
and an alternative meter (numerical, e.g., 2, 3, 4, 6). | |
It is split into training, validation, and test sets, each available in two class configurations: | |
2-class and 4-class. All audio is 16-bit WAV format. | |
""" | |
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800" | |
_LICENSE = "mit" | |
# Define the labels - adjust these based on your actual data | |
LABELS_4 = ["three", "four", "five", "seven"] | |
LABELS_2 = ["simple", "complex"] # or whatever your 2-class grouping actually is | |
class Meter2800Config(datasets.BuilderConfig): | |
"""BuilderConfig for Meter2800.""" | |
def __init__(self, name, **kwargs): | |
super(Meter2800Config, self).__init__( | |
name=name, | |
version=datasets.Version("1.0.0"), | |
**kwargs | |
) | |
class Meter2800(datasets.GeneratorBasedBuilder): | |
"""Meter2800 dataset.""" | |
BUILDER_CONFIGS = [ | |
Meter2800Config( | |
name="4_classes", | |
description="4-class meter classification" | |
), | |
Meter2800Config( | |
name="2_classes", | |
description="2-class meter classification" | |
), | |
] | |
DEFAULT_CONFIG_NAME = "4_classes" | |
def _info(self): | |
if self.config.name == "4_classes": | |
label_names = LABELS_4 | |
elif self.config.name == "2_classes": | |
label_names = LABELS_2 | |
else: | |
# Fallback - shouldn't happen with proper configs | |
label_names = LABELS_4 | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features({ | |
"filename": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=None), | |
"label": datasets.ClassLabel(names=label_names), | |
"meter": datasets.Value("string"), | |
"alt_meter": datasets.Value("string"), | |
}), | |
supervised_keys=("audio", "label"), | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# Get the data directory | |
data_dir = dl_manager.download_and_extract("") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"csv_file": f"{data_dir}/data_train_{self.config.name}.csv", | |
"data_dir": data_dir | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"csv_file": f"{data_dir}/data_val_{self.config.name}.csv", | |
"data_dir": data_dir | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"csv_file": f"{data_dir}/data_test_{self.config.name}.csv", | |
"data_dir": data_dir | |
}, | |
), | |
] | |
def _generate_examples(self, csv_file, data_dir): | |
df = pd.read_csv(csv_file) | |
df = df.dropna(subset=["filename", "label", "meter"]).reset_index(drop=True) | |
for idx, row in df.iterrows(): | |
# Construct the full audio path | |
audio_path = f"{data_dir}/{row['filename']}" | |
yield idx, { | |
"filename": row["filename"], | |
"audio": audio_path, | |
"label": row["label"], | |
"meter": str(row["meter"]), | |
"alt_meter": str(row.get("alt_meter", row["meter"])), | |
} | |