Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
Commit
·
425dd3a
1
Parent(s):
576f770
updated readme
Browse files
README.md
CHANGED
@@ -61,17 +61,27 @@ Load the dataset via the `datasets` library with automatic audio decoding:
|
|
61 |
|
62 |
```python
|
63 |
from datasets import load_dataset, Audio
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
Each entry in the dataset contains:
|
|
|
61 |
|
62 |
```python
|
63 |
from datasets import load_dataset, Audio
|
64 |
+
|
65 |
+
meter2800 = load_dataset("pianistprogrammer/meter2800", name="4_classes")
|
66 |
+
```
|
67 |
+
|
68 |
+
The output should look like this
|
69 |
+
|
70 |
+
```python
|
71 |
+
DatasetDict({
|
72 |
+
train: Dataset({
|
73 |
+
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
|
74 |
+
num_rows: 1680
|
75 |
+
})
|
76 |
+
validation: Dataset({
|
77 |
+
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
|
78 |
+
num_rows: 420
|
79 |
+
})
|
80 |
+
test: Dataset({
|
81 |
+
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
|
82 |
+
num_rows: 700
|
83 |
+
})
|
84 |
+
})
|
85 |
|
86 |
|
87 |
Each entry in the dataset contains:
|