Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
Commit
·
747f6d0
1
Parent(s):
ec015f3
Refactor Meter2800 dataset class and improve example generation logic
Browse files- meter2800.py +42 -48
meter2800.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
from pathlib import Path
|
2 |
import datasets
|
3 |
import pandas as pd
|
|
|
4 |
|
5 |
_CITATION = """\
|
6 |
@misc{meter2800_dataset,
|
@@ -14,8 +14,7 @@ _CITATION = """\
|
|
14 |
|
15 |
_DESCRIPTION = """\
|
16 |
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
|
17 |
-
Each audio file is annotated with a primary meter class label
|
18 |
-
and an alternative meter (numerical, e.g., 2, 3, 4, 6).
|
19 |
It is split into training, validation, and test sets, each available in two class configurations:
|
20 |
2-class and 4-class. All audio is 16-bit WAV format.
|
21 |
"""
|
@@ -23,50 +22,35 @@ It is split into training, validation, and test sets, each available in two clas
|
|
23 |
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800"
|
24 |
_LICENSE = "mit"
|
25 |
|
26 |
-
# Define the labels - adjust these based on your actual data
|
27 |
-
LABELS_4 = ["three", "four", "five", "seven"]
|
28 |
-
LABELS_2 = ["simple", "complex"] # or whatever your 2-class grouping actually is
|
29 |
-
|
30 |
-
class Meter2800Config(datasets.BuilderConfig):
|
31 |
-
"""BuilderConfig for Meter2800."""
|
32 |
-
def __init__(self, name, **kwargs):
|
33 |
-
super(Meter2800Config, self).__init__(
|
34 |
-
name=name,
|
35 |
-
version=datasets.Version("1.0.0"),
|
36 |
-
**kwargs
|
37 |
-
)
|
38 |
-
|
39 |
class Meter2800(datasets.GeneratorBasedBuilder):
|
40 |
-
"""Meter2800 dataset."""
|
|
|
|
|
41 |
|
42 |
BUILDER_CONFIGS = [
|
43 |
-
|
44 |
name="4_classes",
|
45 |
-
|
|
|
46 |
),
|
47 |
-
|
48 |
-
name="2_classes",
|
49 |
-
|
|
|
50 |
),
|
51 |
]
|
52 |
-
|
53 |
DEFAULT_CONFIG_NAME = "4_classes"
|
54 |
|
55 |
def _info(self):
|
56 |
-
|
57 |
-
|
58 |
-
elif self.config.name == "2_classes":
|
59 |
-
label_names = LABELS_2
|
60 |
-
else:
|
61 |
-
# Fallback - shouldn't happen with proper configs
|
62 |
-
label_names = LABELS_4
|
63 |
-
|
64 |
return datasets.DatasetInfo(
|
65 |
description=_DESCRIPTION,
|
66 |
features=datasets.Features({
|
67 |
"filename": datasets.Value("string"),
|
68 |
"audio": datasets.Audio(sampling_rate=None),
|
69 |
-
"label": datasets.
|
70 |
"meter": datasets.Value("string"),
|
71 |
"alt_meter": datasets.Value("string"),
|
72 |
}),
|
@@ -77,45 +61,55 @@ class Meter2800(datasets.GeneratorBasedBuilder):
|
|
77 |
)
|
78 |
|
79 |
def _split_generators(self, dl_manager):
|
80 |
-
|
81 |
-
|
|
|
|
|
82 |
|
83 |
return [
|
84 |
datasets.SplitGenerator(
|
85 |
name=datasets.Split.TRAIN,
|
86 |
gen_kwargs={
|
87 |
-
"csv_file": f"
|
88 |
-
"
|
89 |
},
|
90 |
),
|
91 |
datasets.SplitGenerator(
|
92 |
name=datasets.Split.VALIDATION,
|
93 |
gen_kwargs={
|
94 |
-
"csv_file": f"
|
95 |
-
"
|
96 |
},
|
97 |
),
|
98 |
datasets.SplitGenerator(
|
99 |
name=datasets.Split.TEST,
|
100 |
gen_kwargs={
|
101 |
-
"csv_file": f"
|
102 |
-
"
|
103 |
},
|
104 |
),
|
105 |
]
|
106 |
|
107 |
-
def _generate_examples(self, csv_file,
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
df = pd.read_csv(csv_file)
|
109 |
-
df = df.dropna(subset=["filename", "label"
|
110 |
|
111 |
for idx, row in df.iterrows():
|
112 |
-
#
|
113 |
-
|
|
|
|
|
114 |
|
115 |
yield idx, {
|
116 |
"filename": row["filename"],
|
117 |
-
"audio":
|
118 |
-
"label": row["label"],
|
119 |
-
"meter": str(row
|
120 |
-
"alt_meter": str(row.get("alt_meter", row
|
121 |
}
|
|
|
|
|
1 |
import datasets
|
2 |
import pandas as pd
|
3 |
+
from pathlib import Path
|
4 |
|
5 |
_CITATION = """\
|
6 |
@misc{meter2800_dataset,
|
|
|
14 |
|
15 |
_DESCRIPTION = """\
|
16 |
Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification.
|
17 |
+
Each audio file is annotated with a primary meter class label and an alternative meter.
|
|
|
18 |
It is split into training, validation, and test sets, each available in two class configurations:
|
19 |
2-class and 4-class. All audio is 16-bit WAV format.
|
20 |
"""
|
|
|
22 |
_HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800"
|
23 |
_LICENSE = "mit"
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
class Meter2800(datasets.GeneratorBasedBuilder):
|
26 |
+
"""Meter2800 dataset for music meter classification."""
|
27 |
+
|
28 |
+
VERSION = datasets.Version("1.0.0")
|
29 |
|
30 |
BUILDER_CONFIGS = [
|
31 |
+
datasets.BuilderConfig(
|
32 |
name="4_classes",
|
33 |
+
version=VERSION,
|
34 |
+
description="4-class meter classification",
|
35 |
),
|
36 |
+
datasets.BuilderConfig(
|
37 |
+
name="2_classes",
|
38 |
+
version=VERSION,
|
39 |
+
description="2-class meter classification",
|
40 |
),
|
41 |
]
|
42 |
+
|
43 |
DEFAULT_CONFIG_NAME = "4_classes"
|
44 |
|
45 |
def _info(self):
|
46 |
+
# We'll determine the labels dynamically from the CSV files
|
47 |
+
# For now, use a generic ClassLabel that will be updated later
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return datasets.DatasetInfo(
|
49 |
description=_DESCRIPTION,
|
50 |
features=datasets.Features({
|
51 |
"filename": datasets.Value("string"),
|
52 |
"audio": datasets.Audio(sampling_rate=None),
|
53 |
+
"label": datasets.Value("string"), # We'll convert to ClassLabel later
|
54 |
"meter": datasets.Value("string"),
|
55 |
"alt_meter": datasets.Value("string"),
|
56 |
}),
|
|
|
61 |
)
|
62 |
|
63 |
def _split_generators(self, dl_manager):
|
64 |
+
"""Returns SplitGenerators."""
|
65 |
+
|
66 |
+
# The files should be in the root of the repo
|
67 |
+
config_suffix = self.config.name
|
68 |
|
69 |
return [
|
70 |
datasets.SplitGenerator(
|
71 |
name=datasets.Split.TRAIN,
|
72 |
gen_kwargs={
|
73 |
+
"csv_file": f"data_train_{config_suffix}.csv",
|
74 |
+
"split": "train",
|
75 |
},
|
76 |
),
|
77 |
datasets.SplitGenerator(
|
78 |
name=datasets.Split.VALIDATION,
|
79 |
gen_kwargs={
|
80 |
+
"csv_file": f"data_val_{config_suffix}.csv",
|
81 |
+
"split": "validation",
|
82 |
},
|
83 |
),
|
84 |
datasets.SplitGenerator(
|
85 |
name=datasets.Split.TEST,
|
86 |
gen_kwargs={
|
87 |
+
"csv_file": f"data_test_{config_suffix}.csv",
|
88 |
+
"split": "test",
|
89 |
},
|
90 |
),
|
91 |
]
|
92 |
|
93 |
+
def _generate_examples(self, csv_file, split):
|
94 |
+
"""Yields examples."""
|
95 |
+
|
96 |
+
# Read CSV directly - the file should be available in the repo
|
97 |
+
df = pd.read_csv(csv_file)
|
98 |
+
|
99 |
+
# Read CSV
|
100 |
df = pd.read_csv(csv_file)
|
101 |
+
df = df.dropna(subset=["filename", "label"]).reset_index(drop=True)
|
102 |
|
103 |
for idx, row in df.iterrows():
|
104 |
+
# The audio files should be in subdirectories
|
105 |
+
audio_file = row["filename"]
|
106 |
+
if not audio_file.startswith("/"):
|
107 |
+
audio_file = "/" + audio_file
|
108 |
|
109 |
yield idx, {
|
110 |
"filename": row["filename"],
|
111 |
+
"audio": audio_file.lstrip("/"), # Remove leading slash for HF
|
112 |
+
"label": str(row["label"]),
|
113 |
+
"meter": str(row.get("meter", "")),
|
114 |
+
"alt_meter": str(row.get("alt_meter", row.get("meter", ""))),
|
115 |
}
|