Hugging Face's logo Hugging Face Models Datasets Spaces Community Docs Enterprise Pricing Datasets: pianistprogrammer / Meter2800 like 0 Tasks: Audio Classification Modalities: Audio Languages: English Tags: audio music-classification meter-classification multi-class-classification multi-label-classification License: mit Dataset card Files and versions Community Settings Meter2800 / meter2800.py pianistprogrammer's picture pianistprogrammer Refactor Meter2800 dataset configuration and example generation logic ec015f3 1 minute ago raw Copy download link history blame edit delete 4.2 kB from pathlib import Path import datasets import pandas as pd _CITATION = """\ @misc{meter2800_dataset, author = {PianistProgrammer}, title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/datasets/pianistprogrammer/Meter2800} } """ _DESCRIPTION = """\ Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification. Each audio file is annotated with a primary meter class label (e.g., 'two', 'three', 'four') and an alternative meter (numerical, e.g., 2, 3, 4, 6). It is split into training, validation, and test sets, each available in two class configurations: 2-class and 4-class. All audio is 16-bit WAV format. """ _HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/Meter2800" _LICENSE = "mit" # Define the labels - adjust these based on your actual data LABELS_4 = ["three", "four", "five", "seven"] LABELS_2 = ["simple", "complex"] # or whatever your 2-class grouping actually is class Meter2800Config(datasets.BuilderConfig): """BuilderConfig for Meter2800.""" def __init__(self, name, **kwargs): super(Meter2800Config, self).__init__( name=name, version=datasets.Version("1.0.0"), **kwargs ) class Meter2800(datasets.GeneratorBasedBuilder): """Meter2800 dataset.""" BUILDER_CONFIGS = [ Meter2800Config( name="4_classes", description="4-class meter classification" ), Meter2800Config( name="2_classes", description="2-class meter classification" ), ] DEFAULT_CONFIG_NAME = "4_classes" def _info(self): if self.config.name == "4_classes": label_names = LABELS_4 elif self.config.name == "2_classes": label_names = LABELS_2 else: # Fallback - shouldn't happen with proper configs label_names = LABELS_4 return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "filename": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=None), "label": datasets.ClassLabel(names=label_names), "meter": datasets.Value("string"), "alt_meter": datasets.Value("string"), }), supervised_keys=("audio", "label"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): # Get the data directory data_dir = dl_manager.download_and_extract("") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "csv_file": f"{data_dir}/data_train_{self.config.name}.csv", "data_dir": data_dir }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "csv_file": f"{data_dir}/data_val_{self.config.name}.csv", "data_dir": data_dir }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "csv_file": f"{data_dir}/data_test_{self.config.name}.csv", "data_dir": data_dir }, ), ] def _generate_examples(self, csv_file, data_dir): df = pd.read_csv(csv_file) df = df.dropna(subset=["filename", "label", "meter"]).reset_index(drop=True) for idx, row in df.iterrows(): # Construct the full audio path audio_path = f"{data_dir}/{row['filename']}" yield idx, { "filename": row["filename"], "audio": audio_path, "label": row["label"], "meter": str(row["meter"]), "alt_meter": str(row.get("alt_meter", row["meter"])), }