# meter2800.py from pathlib import Path import datasets import pandas as pd _CITATION = """\ @misc{meter2800_dataset, author = {PianistProgrammer}, title = {{Meter2800}: A Dataset for Music Time signature detection / Meter Classification}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/datasets/pianistprogrammer/meter2800} } """ _DESCRIPTION = """\ Meter2800 is a dataset of 2,800 music audio samples for automatic meter classification. Each audio file is annotated with a primary meter class label and an alternative meter. It is split into training, validation, and test sets, each available in two class configurations: 2-class and 4-class. All audio is 16-bit WAV format. """ _HOMEPAGE = "https://huggingface.co/datasets/pianistprogrammer/meter2800" _LICENSE = "mit" LABELS_4 = ["three", "four", "five", "seven"] LABELS_2 = ["three", "four"] class Meter2800Config(datasets.BuilderConfig): def __init__(self, name, **kwargs): super().__init__(name=name, version=datasets.Version("1.0.0"), **kwargs) class Meter2800(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ Meter2800Config(name="4_classes", description="4‑class meter classification"), Meter2800Config(name="2_classes", description="2‑class meter classification"), ] DEFAULT_CONFIG_NAME = "4_classes" def _info(self): labels = LABELS_4 if self.config.name == "4_classes" else LABELS_2 return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "filename": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=22050), "label": datasets.ClassLabel(names=labels), "meter": datasets.Value("string"), "alt_meter": datasets.Value("string"), }), supervised_keys=("audio", "label"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): csv_links = { split: f"https://huggingface.co/datasets/pianistprogrammer/meter2800/resolve/main/data_{split}_{self.config.name}.csv" for split in ["train", "val", "test"] } csv_files = dl_manager.download(csv_links) archive = dl_manager.download_and_extract( "https://huggingface.co/datasets/pianistprogrammer/meter2800/resolve/main/data.tar.gz" ) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"csv_path": csv_files["train"], "root": archive}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": csv_files["val"], "root": archive}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"csv_path": csv_files["test"], "root": archive}), ] def _generate_examples(self, csv_path, root): df = pd.read_csv(csv_path).dropna(subset=["filename", "label", "meter"]).reset_index(drop=True) for idx, row in df.iterrows(): rel = row["filename"].lstrip("/") # ensure relative path, not absolute audio_path = Path(root) / rel if not audio_path.is_file(): raise FileNotFoundError(f"Missing audio file: {audio_path}") yield idx, { "filename": rel, "audio": str(audio_path), "label": row["label"], "meter": str(row["meter"]), "alt_meter": str(row.get("alt_meter", row["meter"])), }