File size: 9,986 Bytes
1015ee3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfa3b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015ee3
 
 
 
 
 
 
 
3cfad37
1015ee3
 
 
 
3cfad37
1015ee3
 
 
 
 
 
 
 
0bfa3b2
 
 
 
1015ee3
 
0bfa3b2
 
 
 
1015ee3
 
0bfa3b2
 
1015ee3
 
0bfa3b2
1015ee3
 
 
 
 
0bfa3b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015ee3
0bfa3b2
 
1015ee3
 
 
0bfa3b2
1015ee3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
from typing import Dict

import pandas as pd
from pie_modules.document.processing import RegexPartitioner
from pytorch_ie.annotations import BinaryRelation
from pytorch_ie.documents import (
    TextDocumentWithLabeledSpansAndBinaryRelations,
    TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
)

from pie_datasets.builders import BratBuilder
from pie_datasets.builders.brat import BratConfig, BratDocumentWithMergedSpans
from pie_datasets.core.dataset import DocumentConvertersType
from pie_datasets.document.processing import Caster, Converter, Pipeline


def get_split_paths(url_split_ids: str, subdirectory: str) -> Dict[str, str]:
    df_splits = pd.read_csv(url_split_ids, sep=";")
    splits2ids = df_splits.groupby(df_splits["SET"]).agg(list).to_dict()["ID"]
    return {
        split.lower(): [os.path.join(subdirectory, split_id) for split_id in split_ids]
        for split, split_ids in splits2ids.items()
    }


URL = "https://github.com/ArneBinder/pie-datasets/raw/83fb46f904b13f335b6da3cce2fc7004d802ce4e/data/datasets/ArgumentAnnotatedEssays-2.0/brat-project-final.zip"
URL_SPLIT_IDS = "https://raw.githubusercontent.com/ArneBinder/pie-datasets/83fb46f904b13f335b6da3cce2fc7004d802ce4e/data/datasets/ArgumentAnnotatedEssays-2.0/train-test-split.csv"
SPLIT_PATHS = get_split_paths(URL_SPLIT_IDS, subdirectory="brat-project-final")

DEFAULT_ATTRIBUTIONS_TO_RELATIONS_DICT = {"For": "supports", "Against": "attacks"}


def convert_aae2_claim_attributions_to_relations(
    document: BratDocumentWithMergedSpans,
    method: str,
    attributions_to_relations_mapping: Dict[str, str] = DEFAULT_ATTRIBUTIONS_TO_RELATIONS_DICT,
    major_claim_label: str = "MajorClaim",
    claim_label: str = "Claim",
    semantically_same_label: str = "semantically_same",
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
    """This function collects the attributions of Claims from BratDocumentWithMergedSpans, and
    build new relations between MajorClaims and Claims based on these attributions in the following
    way:
    1) "connect_first":
    Each Claim points to the first MajorClaim,
    and the other MajorClaim(s) is labeled as semantically same as the first MajorClaim.
    The number of new relations created are: NoOfMajorClaim - 1 + NoOfClaim.
    2) "connect_all":
    Each Claim points to every MajorClaim; creating many-to-many relations.
    The number of new relations created are: NoOfMajorClaim x NoOfClaim.

    The attributions are transformed into the relation labels as listed in
    DEFAULT_ATTRIBUTIONS_TO_RELATIONS_DICT dictionary.
    """
    document = document.copy()
    new_document = TextDocumentWithLabeledSpansAndBinaryRelations(
        text=document.text, id=document.id, metadata=document.metadata
    )
    # import from document
    spans = document.spans.clear()
    new_document.labeled_spans.extend(spans)
    relations = document.relations.clear()
    new_document.binary_relations.extend(relations)

    claim_attributes = [
        attribute
        for attribute in document.span_attributes
        if attribute.annotation.label == claim_label
    ]

    # get all MajorClaims
    # sorted by start position to ensure the first MajorClaim is really the first one that occurs in the text
    major_claims = sorted(
        [mc for mc in new_document.labeled_spans if mc.label == major_claim_label],
        key=lambda span: span.start,
    )

    if method == "connect_first":
        if len(major_claims) > 0:
            first_major_claim = major_claims.pop(0)

            # Add relation between Claims and first MajorClaim
            for claim_attribute in claim_attributes:
                new_relation = BinaryRelation(
                    head=claim_attribute.annotation,
                    tail=first_major_claim,
                    label=attributions_to_relations_mapping[claim_attribute.value],
                )
                new_document.binary_relations.append(new_relation)

            # Add relations between MajorClaims
            for majorclaim in major_claims:
                new_relation = BinaryRelation(
                    head=majorclaim,
                    tail=first_major_claim,
                    label=semantically_same_label,
                )
                new_document.binary_relations.append(new_relation)

    elif method == "connect_all":
        for major_claim in major_claims:
            for claim_attribute in claim_attributes:
                new_relation = BinaryRelation(
                    head=claim_attribute.annotation,
                    tail=major_claim,
                    label=attributions_to_relations_mapping[claim_attribute.value],
                )
                new_document.binary_relations.append(new_relation)

    else:
        raise ValueError(f"unknown method: {method}")

    return new_document


def get_common_pipeline_steps(conversion_method: str) -> dict:
    return dict(
        convert=Converter(
            function=convert_aae2_claim_attributions_to_relations,
            method=conversion_method,
        ),
    )


def remove_cross_partition_relations(
    document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
) -> TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions:
    # for each labeled_spans entry, get the labeled_partitions entry it belongs to
    labeled_span2partition = {}
    for labeled_span in document.labeled_spans:
        for partition in document.labeled_partitions:
            if partition.start <= labeled_span.start and labeled_span.end <= partition.end:
                labeled_span2partition[labeled_span] = partition
                break
        else:
            raise ValueError(f"Could not find partition for labeled_span: {labeled_span}")

    result = document.copy(with_annotations=True)
    idx = 0
    for relation in document.binary_relations:
        head_partition = labeled_span2partition[relation.head]
        tail_partition = labeled_span2partition[relation.tail]
        if head_partition != tail_partition:
            result.binary_relations.pop(idx)
        else:
            idx += 1
    return result


# def split_documents_into_partitions(
#    document: TextDocumentWithLabeledSpansAndBinaryRelations,
# ) -> TextDocumentWithLabeledSpansAndBinaryRelations:
#    raise NotImplementedError("split_documents_into_partitions is not implemented yet.")


def get_common_pipeline_steps_paragraphs(conversion_method: str) -> dict:
    return dict(
        **get_common_pipeline_steps(conversion_method=conversion_method),
        cast=Caster(document_type=TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions),
        add_partitions=RegexPartitioner(
            partition_layer_name="labeled_partitions",
            default_partition_label="paragraph",
            pattern="\n",
            strip_whitespace=True,
            verbose=False,
        ),
    )


class ArgumentAnnotatedEssaysV2Config(BratConfig):
    def __init__(self, conversion_method: str, **kwargs):
        """BuilderConfig for ArgumentAnnotatedEssaysV2.

        Args:
            conversion_method: either "connect_first" or "connect_all", see convert_aae2_claim_attributions_to_relations
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(merge_fragmented_spans=True, **kwargs)
        self.conversion_method = conversion_method


class ArgumentAnnotatedEssaysV2(BratBuilder):
    BUILDER_CONFIG_CLASS = ArgumentAnnotatedEssaysV2Config
    BASE_DATASET_PATH = "DFKI-SLT/brat"
    BASE_DATASET_REVISION = "bb8c37d84ddf2da1e691d226c55fef48fd8149b5"

    BUILDER_CONFIGS = [
        ArgumentAnnotatedEssaysV2Config(
            name=BratBuilder.DEFAULT_CONFIG_NAME,
            conversion_method="connect_first",
        ),
        ArgumentAnnotatedEssaysV2Config(
            name="paragraphs",
            conversion_method="connect_all",
        ),
    ]

    # we need to add None to the list of dataset variants to support the default dataset variant
    BASE_BUILDER_KWARGS_DICT = {
        dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS}
        for dataset_variant in [None] + [config.name for config in BUILDER_CONFIGS]
    }

    DOCUMENT_TYPES = {config.name: BratDocumentWithMergedSpans for config in BUILDER_CONFIGS}

    @property
    def document_converters(self) -> DocumentConvertersType:
        if self.config.name in [None, "main_claim_connect_all", BratBuilder.DEFAULT_CONFIG_NAME]:
            return {
                TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
                    **get_common_pipeline_steps(conversion_method=self.config.conversion_method)
                ),
                TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
                    **get_common_pipeline_steps_paragraphs(
                        conversion_method=self.config.conversion_method
                    )
                ),
            }
        elif self.config.name == "paragraphs":
            return {
                # return one document per paragraph
                # TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
                #    **get_common_pipeline_steps_paragraphs(conversion_method=self.config.conversion_method),
                #    split_documents=Converter(function=split_documents_into_partitions),
                # ),
                # just remove the cross-paragraph relations
                TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
                    **get_common_pipeline_steps_paragraphs(
                        conversion_method=self.config.conversion_method
                    ),
                    remove_cross_partition_relations=Converter(
                        function=remove_cross_partition_relations
                    ),
                ),
            }

        else:
            raise ValueError(f"Unknown dataset variant: {self.config.name}")