ArneBinder commited on
Commit
b703d7a
·
verified ·
1 Parent(s): 28ef031

https://github.com/ArneBinder/pie-datasets/pull/100

Browse files
README.md CHANGED
@@ -3,6 +3,27 @@
3
  This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the
4
  [ArgMicro Huggingface dataset loading script](https://huggingface.co/datasets/DFKI-SLT/argmicro).
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ## Dataset Variants
7
 
8
  The dataset contains two `BuilderConfig`'s:
@@ -53,3 +74,122 @@ The dataset provides document converters for the following target document types
53
 
54
  See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
55
  definitions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the
4
  [ArgMicro Huggingface dataset loading script](https://huggingface.co/datasets/DFKI-SLT/argmicro).
5
 
6
+ ## Usage
7
+
8
+ ```python
9
+ from pie_datasets import load_dataset
10
+ from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations
11
+
12
+ # load English variant
13
+ dataset = load_dataset("pie/argmicro", name="en")
14
+
15
+ # if required, normalize the document type (see section Document Converters below)
16
+ dataset_converted = dataset.to_document_type(TextDocumentWithLabeledSpansAndBinaryRelations)
17
+ assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledSpansAndBinaryRelations)
18
+
19
+ # get first relation in the first document
20
+ doc = dataset_converted["train"][0]
21
+ print(doc.binary_relations[0])
22
+ # BinaryRelation(head=LabeledSpan(start=0, end=81, label='opp', score=1.0), tail=LabeledSpan(start=326, end=402, label='pro', score=1.0), label='reb', score=1.0)
23
+ print(doc.binary_relations[0].resolve())
24
+ # ('reb', (('opp', "Yes, it's annoying and cumbersome to separate your rubbish properly all the time."), ('pro', 'We Berliners should take the chance and become pioneers in waste separation!')))
25
+ ```
26
+
27
  ## Dataset Variants
28
 
29
  The dataset contains two `BuilderConfig`'s:
 
74
 
75
  See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
76
  definitions.
77
+
78
+ ### Collected Statistics after Document Conversion
79
+
80
+ We use the script `evaluate_documents.py` from [PyTorch-IE-Hydra-Template](https://github.com/ArneBinder/pytorch-ie-hydra-template-1) to generate these statistics.
81
+ After checking out that code, the statistics and plots can be generated by the command:
82
+
83
+ ```commandline
84
+ python src/evaluate_documents.py dataset=argmicro_base metric=METRIC
85
+ ```
86
+
87
+ where a `METRIC` is called according to the available metric configs in `config/metric/METRIC` (see [metrics](https://github.com/ArneBinder/pytorch-ie-hydra-template-1/tree/main/configs/metric)).
88
+
89
+ This also requires to have the following dataset config in `configs/dataset/argmicro_base.yaml` of this dataset within the repo directory:
90
+
91
+ ```commandline
92
+ _target_: src.utils.execute_pipeline
93
+ input:
94
+ _target_: pie_datasets.DatasetDict.load_dataset
95
+ path: pie/argmicro
96
+ revision: 28ef031d2a2c97be7e9ed360e1a5b20bd55b57b2
97
+ name: en
98
+ ```
99
+
100
+ For token based metrics, this uses `bert-base-uncased` from `transformer.AutoTokenizer` (see [AutoTokenizer](https://huggingface.co/docs/transformers/v4.37.1/en/model_doc/auto#transformers.AutoTokenizer), and [bert-based-uncased](https://huggingface.co/bert-base-uncased) to tokenize `text` in `TextDocumentWithLabeledSpansAndBinaryRelations` (see [document type](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py)).
101
+
102
+ #### Relation argument (outer) token distance per label
103
+
104
+ The distance is measured from the first token of the first argumentative unit to the last token of the last unit, a.k.a. outer distance.
105
+
106
+ We collect the following statistics: number of documents in the split (*no. doc*), no. of relations (*len*), mean of token distance (*mean*), standard deviation of the distance (*std*), minimum outer distance (*min*), and maximum outer distance (*max*).
107
+ We also present histograms in the collapsible, showing the distribution of these relation distances (x-axis; and unit-counts in y-axis), accordingly.
108
+
109
+ <details>
110
+ <summary>Command</summary>
111
+
112
+ ```
113
+ python src/evaluate_documents.py dataset=argmicro_base metric=relation_argument_token_distances
114
+ ```
115
+
116
+ </details>
117
+
118
+ | | len | max | mean | min | std |
119
+ | :---- | ---: | --: | -----: | --: | -----: |
120
+ | ALL | 1018 | 127 | 44.434 | 14 | 21.501 |
121
+ | exa | 18 | 63 | 33.556 | 16 | 13.056 |
122
+ | joint | 88 | 48 | 30.091 | 17 | 9.075 |
123
+ | reb | 220 | 127 | 49.327 | 16 | 24.653 |
124
+ | sup | 562 | 124 | 46.534 | 14 | 22.079 |
125
+ | und | 130 | 84 | 38.292 | 17 | 12.321 |
126
+
127
+ <details>
128
+ <summary>Histogram (split: train, 112 documents)</summary>
129
+
130
+ ![rtd-label_argmicro.png](img%2Frtd-label_argmicro.png)
131
+
132
+ </details>
133
+
134
+ #### Span lengths (tokens)
135
+
136
+ The span length is measured from the first token of the first argumentative unit to the last token of the particular unit.
137
+
138
+ We collect the following statistics: number of documents in the split (*no. doc*), no. of spans (*len*), mean of number of tokens in a span (*mean*), standard deviation of the number of tokens (*std*), minimum tokens in a span (*min*), and maximum tokens in a span (*max*).
139
+ We also present histograms in the collapsible, showing the distribution of these token-numbers (x-axis; and unit-counts in y-axis), accordingly.
140
+
141
+ <details>
142
+ <summary>Command</summary>
143
+
144
+ ```
145
+ python src/evaluate_documents.py dataset=argmicro_base metric=span_lengths_tokens
146
+ ```
147
+
148
+ </details>
149
+
150
+ | statistics | train |
151
+ | :--------- | -----: |
152
+ | no. doc | 112 |
153
+ | len | 576 |
154
+ | mean | 16.365 |
155
+ | std | 6.545 |
156
+ | min | 4 |
157
+ | max | 41 |
158
+
159
+ <details>
160
+ <summary>Histogram (split: train, 112 documents)</summary>
161
+
162
+ ![slt_argmicro.png](img%2Fslt_argmicro.png)
163
+
164
+ </details>
165
+
166
+ #### Token length (tokens)
167
+
168
+ The token length is measured from the first token of the document to the last one.
169
+
170
+ We collect the following statistics: number of documents in the split (*no. doc*), mean of document token-length (*mean*), standard deviation of the length (*std*), minimum number of tokens in a document (*min*), and maximum number of tokens in a document (*max*).
171
+ We also present histograms in the collapsible, showing the distribution of these token lengths (x-axis; and unit-counts in y-axis), accordingly.
172
+
173
+ <details>
174
+ <summary>Command</summary>
175
+
176
+ ```
177
+ python src/evaluate_documents.py dataset=argmicro_base metric=count_text_tokens
178
+ ```
179
+
180
+ </details>
181
+
182
+ | statistics | train |
183
+ | :--------- | -----: |
184
+ | no. doc | 112 |
185
+ | mean | 84.161 |
186
+ | std | 22.596 |
187
+ | min | 36 |
188
+ | max | 153 |
189
+
190
+ <details>
191
+ <summary>Histogram (split: train, 112 documents)</summary>
192
+
193
+ ![tl_argmicro.png](img%2Ftl_argmicro.png)
194
+
195
+ </details>
argmicro.py CHANGED
@@ -1,283 +1,283 @@
1
- import copy
2
- import dataclasses
3
- import logging
4
- from collections import defaultdict
5
- from itertools import combinations
6
- from typing import Any, Dict, List, Optional, Set, Tuple
7
-
8
- import datasets
9
- from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
10
- from pytorch_ie.core import Annotation, AnnotationList, annotation_field
11
- from pytorch_ie.documents import (
12
- TextBasedDocument,
13
- TextDocumentWithLabeledSpansAndBinaryRelations,
14
- )
15
-
16
- from pie_datasets import GeneratorBasedBuilder
17
-
18
- log = logging.getLogger(__name__)
19
-
20
-
21
- def dl2ld(dict_of_lists):
22
- return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
23
-
24
-
25
- def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
26
- return {k: [d[k] for d in list_of_dicts] for k in keys}
27
-
28
-
29
- @dataclasses.dataclass(frozen=True)
30
- class LabeledAnnotationCollection(Annotation):
31
- annotations: Tuple[Annotation, ...]
32
- label: str
33
-
34
-
35
- @dataclasses.dataclass(frozen=True)
36
- class MultiRelation(Annotation):
37
- heads: Tuple[Annotation, ...] # sources == heads
38
- tails: Tuple[Annotation, ...] # targets == tails
39
- label: str
40
-
41
-
42
- @dataclasses.dataclass
43
- class ArgMicroDocument(TextBasedDocument):
44
- topic_id: Optional[str] = None
45
- stance: AnnotationList[Label] = annotation_field()
46
- edus: AnnotationList[Span] = annotation_field(target="text")
47
- adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
48
- relations: AnnotationList[MultiRelation] = annotation_field(target="adus")
49
-
50
-
51
- def example_to_document(
52
- example: Dict[str, Any],
53
- adu_type_label: datasets.ClassLabel,
54
- edge_type_label: datasets.ClassLabel,
55
- stance_label: datasets.ClassLabel,
56
- ) -> ArgMicroDocument:
57
- stance = stance_label.int2str(example["stance"])
58
- document = ArgMicroDocument(
59
- id=example["id"],
60
- text=example["text"],
61
- topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
62
- )
63
- if stance != "UNDEFINED":
64
- document.stance.append(Label(label=stance))
65
-
66
- # build EDUs
67
- edus_dict = {
68
- edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
69
- }
70
- # build ADUs
71
- adu_id2edus = defaultdict(list)
72
- edges_multi_source = defaultdict(dict)
73
- for edge in dl2ld(example["edges"]):
74
- edge_type = edge_type_label.int2str(edge["type"])
75
- if edge_type == "seg":
76
- adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
77
- elif edge_type == "add":
78
- if "src" not in edges_multi_source[edge["trg"]]:
79
- edges_multi_source[edge["trg"]]["src"] = []
80
- edges_multi_source[edge["trg"]]["src"].append(edge["src"])
81
- else:
82
- edges_multi_source[edge["id"]]["type"] = edge_type
83
- edges_multi_source[edge["id"]]["trg"] = edge["trg"]
84
- if "src" not in edges_multi_source[edge["id"]]:
85
- edges_multi_source[edge["id"]]["src"] = []
86
- edges_multi_source[edge["id"]]["src"].append(edge["src"])
87
- adus_dict = {}
88
- for adu in dl2ld(example["adus"]):
89
- adu_type = adu_type_label.int2str(adu["type"])
90
- adu_edus = adu_id2edus[adu["id"]]
91
- adus_dict[adu["id"]] = LabeledAnnotationCollection(
92
- annotations=tuple(adu_edus), label=adu_type
93
- )
94
- # build relations
95
- rels_dict = {}
96
- for edge_id, edge in edges_multi_source.items():
97
- edge_target = edge["trg"]
98
- if edge_target in edges_multi_source:
99
- targets = edges_multi_source[edge_target]["src"]
100
- else:
101
- targets = [edge_target]
102
- if any(target in edges_multi_source for target in targets):
103
- raise Exception("Multi-hop relations are not supported")
104
- rel = MultiRelation(
105
- heads=tuple(adus_dict[source] for source in edge["src"]),
106
- tails=tuple(adus_dict[target] for target in targets),
107
- label=edge["type"],
108
- )
109
- rels_dict[edge_id] = rel
110
-
111
- document.edus.extend(edus_dict.values())
112
- document.adus.extend(adus_dict.values())
113
- document.relations.extend(rels_dict.values())
114
- document.metadata["edu_ids"] = list(edus_dict.keys())
115
- document.metadata["adu_ids"] = list(adus_dict.keys())
116
- document.metadata["rel_ids"] = list(rels_dict.keys())
117
-
118
- document.metadata["rel_seg_ids"] = {
119
- edge["src"]: edge["id"]
120
- for edge in dl2ld(example["edges"])
121
- if edge_type_label.int2str(edge["type"]) == "seg"
122
- }
123
- document.metadata["rel_add_ids"] = {
124
- edge["src"]: edge["id"]
125
- for edge in dl2ld(example["edges"])
126
- if edge_type_label.int2str(edge["type"]) == "add"
127
- }
128
- return document
129
-
130
-
131
- def document_to_example(
132
- document: ArgMicroDocument,
133
- adu_type_label: datasets.ClassLabel,
134
- edge_type_label: datasets.ClassLabel,
135
- stance_label: datasets.ClassLabel,
136
- ) -> Dict[str, Any]:
137
- stance = document.stance[0].label if len(document.stance) else "UNDEFINED"
138
- result = {
139
- "id": document.id,
140
- "text": document.text,
141
- "topic_id": document.topic_id or "UNDEFINED",
142
- "stance": stance_label.str2int(stance),
143
- }
144
-
145
- # construct EDUs
146
- edus = {
147
- edu: {"id": edu_id, "start": edu.start, "end": edu.end}
148
- for edu_id, edu in zip(document.metadata["edu_ids"], document.edus)
149
- }
150
- result["edus"] = ld2dl(
151
- sorted(edus.values(), key=lambda x: x["id"]), keys=["id", "start", "end"]
152
- )
153
-
154
- # construct ADUs
155
- adus = {
156
- adu: {"id": adu_id, "type": adu_type_label.str2int(adu.label)}
157
- for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
158
- }
159
- result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])
160
-
161
- # construct edges
162
- rels_dict: Dict[str, MultiRelation] = {
163
- rel_id: rel for rel_id, rel in zip(document.metadata["rel_ids"], document.relations)
164
- }
165
- heads2rel_id = {
166
- rel.heads: red_id for red_id, rel in zip(document.metadata["rel_ids"], document.relations)
167
- }
168
- edges = []
169
- for rel_id, rel in rels_dict.items():
170
- # if it is an undercut attack, we need to change the target to the relation that connects the target
171
- if rel.label == "und":
172
- target_id = heads2rel_id[rel.tails]
173
- else:
174
- if len(rel.tails) > 1:
175
- raise Exception("Multi-target relations are not supported")
176
- target_id = adus[rel.tails[0]]["id"]
177
- source_id = adus[rel.heads[0]]["id"]
178
- edge = {
179
- "id": rel_id,
180
- "src": source_id,
181
- "trg": target_id,
182
- "type": edge_type_label.str2int(rel.label),
183
- }
184
- edges.append(edge)
185
- # if it is an additional support, we need to change the source to the relation that connects the source
186
- for head in rel.heads[1:]:
187
- source_id = adus[head]["id"]
188
- edge_id = document.metadata["rel_add_ids"][source_id]
189
- edge = {
190
- "id": edge_id,
191
- "src": source_id,
192
- "trg": rel_id,
193
- "type": edge_type_label.str2int("add"),
194
- }
195
- edges.append(edge)
196
-
197
- for adu_id, adu in zip(document.metadata["adu_ids"], document.adus):
198
- for edu in adu.annotations:
199
- source_id = edus[edu]["id"]
200
- target_id = adus[adu]["id"]
201
- edge_id = document.metadata["rel_seg_ids"][source_id]
202
- edge = {
203
- "id": edge_id,
204
- "src": source_id,
205
- "trg": target_id,
206
- "type": edge_type_label.str2int("seg"),
207
- }
208
- edges.append(edge)
209
-
210
- result["edges"] = ld2dl(
211
- sorted(edges, key=lambda x: x["id"]), keys=["id", "src", "trg", "type"]
212
- )
213
- return result
214
-
215
-
216
- def convert_to_text_document_with_labeled_spans_and_binary_relations(
217
- doc: ArgMicroDocument,
218
- ) -> TextDocumentWithLabeledSpansAndBinaryRelations:
219
- # convert adus to entities
220
- entities = []
221
- adu2entity: Dict[LabeledAnnotationCollection, Span] = {}
222
- for adu in doc.adus:
223
- edus: Set[Span] = set(adu.annotations)
224
- start = min(edu.start for edu in edus)
225
- end = max(edu.end for edu in edus)
226
- # assert there are no edus overlapping with the adu, but not part of it
227
- for edu in doc.edus:
228
- if (start <= edu.start < end or start < edu.end <= end) and edu not in edus:
229
- raise Exception(f"edu {edu} is overlapping with adu {adu}, but is not part of it")
230
- entity = LabeledSpan(start=start, end=end, label=adu.label)
231
- entities.append(entity)
232
- adu2entity[adu] = entity
233
- relations = []
234
- for relation in doc.relations:
235
- # add all possible combinations of heads and tails
236
- for head in relation.heads:
237
- for tail in relation.tails:
238
- rel = BinaryRelation(
239
- label=relation.label, head=adu2entity[head], tail=adu2entity[tail]
240
- )
241
- relations.append(rel)
242
- # also add the relations between the heads themselves
243
- for head1, head2 in combinations(relation.heads, 2):
244
- rel = BinaryRelation(label="joint", head=adu2entity[head1], tail=adu2entity[head2])
245
- relations.append(rel)
246
- # also add the reverse relation
247
- rel = BinaryRelation(label="joint", head=adu2entity[head2], tail=adu2entity[head1])
248
- relations.append(rel)
249
-
250
- metadata = copy.deepcopy(doc.metadata)
251
- if len(doc.stance) > 0:
252
- metadata["stance"] = doc.stance[0].label
253
- metadata["topic"] = doc.topic_id
254
- result = TextDocumentWithLabeledSpansAndBinaryRelations(
255
- text=doc.text, id=doc.id, metadata=doc.metadata
256
- )
257
- result.labeled_spans.extend(entities)
258
- result.binary_relations.extend(relations)
259
-
260
- return result
261
-
262
-
263
- class ArgMicro(GeneratorBasedBuilder):
264
- DOCUMENT_TYPE = ArgMicroDocument
265
-
266
- DOCUMENT_CONVERTERS = {
267
- TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
268
- }
269
-
270
- BASE_DATASET_PATH = "DFKI-SLT/argmicro"
271
- BASE_DATASET_REVISION = "282733d6d57243f2a202d81143c4e31bb250e663"
272
-
273
- BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]
274
-
275
- def _generate_document_kwargs(self, dataset):
276
- return {
277
- "adu_type_label": dataset.features["adus"].feature["type"],
278
- "edge_type_label": dataset.features["edges"].feature["type"],
279
- "stance_label": dataset.features["stance"],
280
- }
281
-
282
- def _generate_document(self, example, **kwargs):
283
- return example_to_document(example, **kwargs)
 
1
+ import copy
2
+ import dataclasses
3
+ import logging
4
+ from collections import defaultdict
5
+ from itertools import combinations
6
+ from typing import Any, Dict, List, Optional, Set, Tuple
7
+
8
+ import datasets
9
+ from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
10
+ from pytorch_ie.core import Annotation, AnnotationList, annotation_field
11
+ from pytorch_ie.documents import (
12
+ TextBasedDocument,
13
+ TextDocumentWithLabeledSpansAndBinaryRelations,
14
+ )
15
+
16
+ from pie_datasets import GeneratorBasedBuilder
17
+
18
+ log = logging.getLogger(__name__)
19
+
20
+
21
+ def dl2ld(dict_of_lists):
22
+ return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
23
+
24
+
25
+ def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
26
+ return {k: [d[k] for d in list_of_dicts] for k in keys}
27
+
28
+
29
+ @dataclasses.dataclass(frozen=True)
30
+ class LabeledAnnotationCollection(Annotation):
31
+ annotations: Tuple[Annotation, ...]
32
+ label: str
33
+
34
+
35
+ @dataclasses.dataclass(frozen=True)
36
+ class MultiRelation(Annotation):
37
+ heads: Tuple[Annotation, ...] # sources == heads
38
+ tails: Tuple[Annotation, ...] # targets == tails
39
+ label: str
40
+
41
+
42
+ @dataclasses.dataclass
43
+ class ArgMicroDocument(TextBasedDocument):
44
+ topic_id: Optional[str] = None
45
+ stance: AnnotationList[Label] = annotation_field()
46
+ edus: AnnotationList[Span] = annotation_field(target="text")
47
+ adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
48
+ relations: AnnotationList[MultiRelation] = annotation_field(target="adus")
49
+
50
+
51
+ def example_to_document(
52
+ example: Dict[str, Any],
53
+ adu_type_label: datasets.ClassLabel,
54
+ edge_type_label: datasets.ClassLabel,
55
+ stance_label: datasets.ClassLabel,
56
+ ) -> ArgMicroDocument:
57
+ stance = stance_label.int2str(example["stance"])
58
+ document = ArgMicroDocument(
59
+ id=example["id"],
60
+ text=example["text"],
61
+ topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
62
+ )
63
+ if stance != "UNDEFINED":
64
+ document.stance.append(Label(label=stance))
65
+
66
+ # build EDUs
67
+ edus_dict = {
68
+ edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
69
+ }
70
+ # build ADUs
71
+ adu_id2edus = defaultdict(list)
72
+ edges_multi_source = defaultdict(dict)
73
+ for edge in dl2ld(example["edges"]):
74
+ edge_type = edge_type_label.int2str(edge["type"])
75
+ if edge_type == "seg":
76
+ adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
77
+ elif edge_type == "add":
78
+ if "src" not in edges_multi_source[edge["trg"]]:
79
+ edges_multi_source[edge["trg"]]["src"] = []
80
+ edges_multi_source[edge["trg"]]["src"].append(edge["src"])
81
+ else:
82
+ edges_multi_source[edge["id"]]["type"] = edge_type
83
+ edges_multi_source[edge["id"]]["trg"] = edge["trg"]
84
+ if "src" not in edges_multi_source[edge["id"]]:
85
+ edges_multi_source[edge["id"]]["src"] = []
86
+ edges_multi_source[edge["id"]]["src"].append(edge["src"])
87
+ adus_dict = {}
88
+ for adu in dl2ld(example["adus"]):
89
+ adu_type = adu_type_label.int2str(adu["type"])
90
+ adu_edus = adu_id2edus[adu["id"]]
91
+ adus_dict[adu["id"]] = LabeledAnnotationCollection(
92
+ annotations=tuple(adu_edus), label=adu_type
93
+ )
94
+ # build relations
95
+ rels_dict = {}
96
+ for edge_id, edge in edges_multi_source.items():
97
+ edge_target = edge["trg"]
98
+ if edge_target in edges_multi_source:
99
+ targets = edges_multi_source[edge_target]["src"]
100
+ else:
101
+ targets = [edge_target]
102
+ if any(target in edges_multi_source for target in targets):
103
+ raise Exception("Multi-hop relations are not supported")
104
+ rel = MultiRelation(
105
+ heads=tuple(adus_dict[source] for source in edge["src"]),
106
+ tails=tuple(adus_dict[target] for target in targets),
107
+ label=edge["type"],
108
+ )
109
+ rels_dict[edge_id] = rel
110
+
111
+ document.edus.extend(edus_dict.values())
112
+ document.adus.extend(adus_dict.values())
113
+ document.relations.extend(rels_dict.values())
114
+ document.metadata["edu_ids"] = list(edus_dict.keys())
115
+ document.metadata["adu_ids"] = list(adus_dict.keys())
116
+ document.metadata["rel_ids"] = list(rels_dict.keys())
117
+
118
+ document.metadata["rel_seg_ids"] = {
119
+ edge["src"]: edge["id"]
120
+ for edge in dl2ld(example["edges"])
121
+ if edge_type_label.int2str(edge["type"]) == "seg"
122
+ }
123
+ document.metadata["rel_add_ids"] = {
124
+ edge["src"]: edge["id"]
125
+ for edge in dl2ld(example["edges"])
126
+ if edge_type_label.int2str(edge["type"]) == "add"
127
+ }
128
+ return document
129
+
130
+
131
+ def document_to_example(
132
+ document: ArgMicroDocument,
133
+ adu_type_label: datasets.ClassLabel,
134
+ edge_type_label: datasets.ClassLabel,
135
+ stance_label: datasets.ClassLabel,
136
+ ) -> Dict[str, Any]:
137
+ stance = document.stance[0].label if len(document.stance) else "UNDEFINED"
138
+ result = {
139
+ "id": document.id,
140
+ "text": document.text,
141
+ "topic_id": document.topic_id or "UNDEFINED",
142
+ "stance": stance_label.str2int(stance),
143
+ }
144
+
145
+ # construct EDUs
146
+ edus = {
147
+ edu: {"id": edu_id, "start": edu.start, "end": edu.end}
148
+ for edu_id, edu in zip(document.metadata["edu_ids"], document.edus)
149
+ }
150
+ result["edus"] = ld2dl(
151
+ sorted(edus.values(), key=lambda x: x["id"]), keys=["id", "start", "end"]
152
+ )
153
+
154
+ # construct ADUs
155
+ adus = {
156
+ adu: {"id": adu_id, "type": adu_type_label.str2int(adu.label)}
157
+ for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
158
+ }
159
+ result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])
160
+
161
+ # construct edges
162
+ rels_dict: Dict[str, MultiRelation] = {
163
+ rel_id: rel for rel_id, rel in zip(document.metadata["rel_ids"], document.relations)
164
+ }
165
+ heads2rel_id = {
166
+ rel.heads: red_id for red_id, rel in zip(document.metadata["rel_ids"], document.relations)
167
+ }
168
+ edges = []
169
+ for rel_id, rel in rels_dict.items():
170
+ # if it is an undercut attack, we need to change the target to the relation that connects the target
171
+ if rel.label == "und":
172
+ target_id = heads2rel_id[rel.tails]
173
+ else:
174
+ if len(rel.tails) > 1:
175
+ raise Exception("Multi-target relations are not supported")
176
+ target_id = adus[rel.tails[0]]["id"]
177
+ source_id = adus[rel.heads[0]]["id"]
178
+ edge = {
179
+ "id": rel_id,
180
+ "src": source_id,
181
+ "trg": target_id,
182
+ "type": edge_type_label.str2int(rel.label),
183
+ }
184
+ edges.append(edge)
185
+ # if it is an additional support, we need to change the source to the relation that connects the source
186
+ for head in rel.heads[1:]:
187
+ source_id = adus[head]["id"]
188
+ edge_id = document.metadata["rel_add_ids"][source_id]
189
+ edge = {
190
+ "id": edge_id,
191
+ "src": source_id,
192
+ "trg": rel_id,
193
+ "type": edge_type_label.str2int("add"),
194
+ }
195
+ edges.append(edge)
196
+
197
+ for adu_id, adu in zip(document.metadata["adu_ids"], document.adus):
198
+ for edu in adu.annotations:
199
+ source_id = edus[edu]["id"]
200
+ target_id = adus[adu]["id"]
201
+ edge_id = document.metadata["rel_seg_ids"][source_id]
202
+ edge = {
203
+ "id": edge_id,
204
+ "src": source_id,
205
+ "trg": target_id,
206
+ "type": edge_type_label.str2int("seg"),
207
+ }
208
+ edges.append(edge)
209
+
210
+ result["edges"] = ld2dl(
211
+ sorted(edges, key=lambda x: x["id"]), keys=["id", "src", "trg", "type"]
212
+ )
213
+ return result
214
+
215
+
216
+ def convert_to_text_document_with_labeled_spans_and_binary_relations(
217
+ doc: ArgMicroDocument,
218
+ ) -> TextDocumentWithLabeledSpansAndBinaryRelations:
219
+ # convert adus to entities
220
+ entities = []
221
+ adu2entity: Dict[LabeledAnnotationCollection, Span] = {}
222
+ for adu in doc.adus:
223
+ edus: Set[Span] = set(adu.annotations)
224
+ start = min(edu.start for edu in edus)
225
+ end = max(edu.end for edu in edus)
226
+ # assert there are no edus overlapping with the adu, but not part of it
227
+ for edu in doc.edus:
228
+ if (start <= edu.start < end or start < edu.end <= end) and edu not in edus:
229
+ raise Exception(f"edu {edu} is overlapping with adu {adu}, but is not part of it")
230
+ entity = LabeledSpan(start=start, end=end, label=adu.label)
231
+ entities.append(entity)
232
+ adu2entity[adu] = entity
233
+ relations = []
234
+ for relation in doc.relations:
235
+ # add all possible combinations of heads and tails
236
+ for head in relation.heads:
237
+ for tail in relation.tails:
238
+ rel = BinaryRelation(
239
+ label=relation.label, head=adu2entity[head], tail=adu2entity[tail]
240
+ )
241
+ relations.append(rel)
242
+ # also add the relations between the heads themselves
243
+ for head1, head2 in combinations(relation.heads, 2):
244
+ rel = BinaryRelation(label="joint", head=adu2entity[head1], tail=adu2entity[head2])
245
+ relations.append(rel)
246
+ # also add the reverse relation
247
+ rel = BinaryRelation(label="joint", head=adu2entity[head2], tail=adu2entity[head1])
248
+ relations.append(rel)
249
+
250
+ metadata = copy.deepcopy(doc.metadata)
251
+ if len(doc.stance) > 0:
252
+ metadata["stance"] = doc.stance[0].label
253
+ metadata["topic"] = doc.topic_id
254
+ result = TextDocumentWithLabeledSpansAndBinaryRelations(
255
+ text=doc.text, id=doc.id, metadata=doc.metadata
256
+ )
257
+ result.labeled_spans.extend(entities)
258
+ result.binary_relations.extend(relations)
259
+
260
+ return result
261
+
262
+
263
+ class ArgMicro(GeneratorBasedBuilder):
264
+ DOCUMENT_TYPE = ArgMicroDocument
265
+
266
+ DOCUMENT_CONVERTERS = {
267
+ TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
268
+ }
269
+
270
+ BASE_DATASET_PATH = "DFKI-SLT/argmicro"
271
+ BASE_DATASET_REVISION = "282733d6d57243f2a202d81143c4e31bb250e663"
272
+
273
+ BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]
274
+
275
+ def _generate_document_kwargs(self, dataset):
276
+ return {
277
+ "adu_type_label": dataset.features["adus"].feature["type"],
278
+ "edge_type_label": dataset.features["edges"].feature["type"],
279
+ "stance_label": dataset.features["stance"],
280
+ }
281
+
282
+ def _generate_document(self, example, **kwargs):
283
+ return example_to_document(example, **kwargs)
img/rtd-label_argmicro.png ADDED

Git LFS Details

  • SHA256: b1dd8cd6b591450c5942e3435e1e27bc993b0a5b5ebf026d56f5edc3eaf4c494
  • Pointer size: 130 Bytes
  • Size of remote file: 16.1 kB
img/slt_argmicro.png ADDED

Git LFS Details

  • SHA256: 91cef882e07ad6289a417f87c090cabe2096d059b680f2bfdd155f2576c1a3e5
  • Pointer size: 130 Bytes
  • Size of remote file: 12.1 kB
img/tl_argmicro.png ADDED

Git LFS Details

  • SHA256: 693e4592a4d7ae1376b7fb6007441403f65ecec1626bd1f9d64590b028b10c3c
  • Pointer size: 130 Bytes
  • Size of remote file: 10.3 kB
requirements.txt CHANGED
@@ -1 +1 @@
1
- pie-datasets>=0.3.3,<0.9.0
 
1
+ pie-datasets>=0.3.3,<0.11.0