ArneBinder
commited on
Commit
•
8f9f5d5
1
Parent(s):
56fbd0c
adjust for pytorch-ie 0.28.8
Browse files- README.md +29 -0
- cdcp.py +43 -37
- requirements.txt +1 -0
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PIE Dataset Card for "CDCP"
|
2 |
+
|
3 |
+
This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the
|
4 |
+
[CDCP Huggingface dataset loading script](https://huggingface.co/datasets/DFKI-SLT/cdcp).
|
5 |
+
|
6 |
+
## Data Schema
|
7 |
+
|
8 |
+
The document type for this dataset is `CDCPDocument` which defines the following data fields:
|
9 |
+
|
10 |
+
- `text` (str)
|
11 |
+
- `id` (str, optional)
|
12 |
+
- `metadata` (dictionary, optional)
|
13 |
+
|
14 |
+
and the following annotation layers:
|
15 |
+
|
16 |
+
- `propositions` (annotation type: `LabeledSpan`, target: `text`)
|
17 |
+
- `relations` (annotation type: `BinaryRelation`, target: `propositions`)
|
18 |
+
- `urls` (annotation type: `Attribute`, target: `propositions`)
|
19 |
+
|
20 |
+
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/annotations.py) for the annotation type definitions.
|
21 |
+
|
22 |
+
## Document Converters
|
23 |
+
|
24 |
+
The dataset provides document converters for the following target document types:
|
25 |
+
|
26 |
+
- `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations`
|
27 |
+
|
28 |
+
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
|
29 |
+
definitions.
|
cdcp.py
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
import dataclasses
|
|
|
2 |
from typing import Any, Callable, Dict, List, Optional
|
3 |
|
4 |
import datasets
|
5 |
-
import pytorch_ie.data.builder
|
6 |
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
|
7 |
-
from pytorch_ie.core import Annotation, AnnotationList,
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
from
|
|
|
10 |
|
11 |
-
log =
|
12 |
|
13 |
|
14 |
def dl2ld(dict_of_lists):
|
15 |
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
|
16 |
|
17 |
|
18 |
-
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None
|
19 |
-
|
20 |
-
keys = list_of_dicts[0].keys()
|
21 |
-
if as_list:
|
22 |
-
return [[d[k] for d in list_of_dicts] for k in keys]
|
23 |
-
else:
|
24 |
-
return {k: [d[k] for d in list_of_dicts] for k in keys}
|
25 |
|
26 |
|
27 |
@dataclasses.dataclass(frozen=True)
|
@@ -31,10 +31,7 @@ class Attribute(Annotation):
|
|
31 |
|
32 |
|
33 |
@dataclasses.dataclass
|
34 |
-
class CDCPDocument(
|
35 |
-
text: str
|
36 |
-
id: Optional[str] = None
|
37 |
-
metadata: Dict[str, Any] = dataclasses.field(default_factory=dict)
|
38 |
propositions: AnnotationList[LabeledSpan] = annotation_field(target="text")
|
39 |
relations: AnnotationList[BinaryRelation] = annotation_field(target="propositions")
|
40 |
urls: AnnotationList[Attribute] = annotation_field(target="propositions")
|
@@ -42,15 +39,15 @@ class CDCPDocument(Document):
|
|
42 |
|
43 |
def example_to_document(
|
44 |
example: Dict[str, Any],
|
45 |
-
|
46 |
-
|
47 |
):
|
48 |
document = CDCPDocument(id=example["id"], text=example["text"])
|
49 |
for proposition_dict in dl2ld(example["propositions"]):
|
50 |
proposition = LabeledSpan(
|
51 |
start=proposition_dict["start"],
|
52 |
end=proposition_dict["end"],
|
53 |
-
label=
|
54 |
)
|
55 |
document.propositions.append(proposition)
|
56 |
if proposition_dict.get("url", "") != "":
|
@@ -61,7 +58,7 @@ def example_to_document(
|
|
61 |
relation = BinaryRelation(
|
62 |
head=document.propositions[relation_dict["head"]],
|
63 |
tail=document.propositions[relation_dict["tail"]],
|
64 |
-
label=
|
65 |
)
|
66 |
document.relations.append(relation)
|
67 |
|
@@ -70,8 +67,8 @@ def example_to_document(
|
|
70 |
|
71 |
def document_to_example(
|
72 |
document: CDCPDocument,
|
73 |
-
|
74 |
-
|
75 |
) -> Dict[str, Any]:
|
76 |
result = {"id": document.id, "text": document.text}
|
77 |
proposition2dict = {}
|
@@ -80,7 +77,7 @@ def document_to_example(
|
|
80 |
proposition2dict[proposition] = {
|
81 |
"start": proposition.start,
|
82 |
"end": proposition.end,
|
83 |
-
"label":
|
84 |
"url": "",
|
85 |
}
|
86 |
proposition2idx[proposition] = idx
|
@@ -95,7 +92,7 @@ def document_to_example(
|
|
95 |
{
|
96 |
"head": proposition2idx[relation.head],
|
97 |
"tail": proposition2idx[relation.tail],
|
98 |
-
"label":
|
99 |
}
|
100 |
for relation in document.relations
|
101 |
]
|
@@ -104,20 +101,29 @@ def document_to_example(
|
|
104 |
return result
|
105 |
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
|
118 |
-
class CDCP(
|
119 |
DOCUMENT_TYPE = CDCPDocument
|
120 |
|
|
|
|
|
|
|
|
|
121 |
BASE_DATASET_PATH = "DFKI-SLT/cdcp"
|
122 |
|
123 |
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]
|
@@ -126,11 +132,11 @@ class CDCP(pytorch_ie.data.builder.GeneratorBasedBuilder):
|
|
126 |
|
127 |
def _generate_document_kwargs(self, dataset):
|
128 |
return {
|
129 |
-
"
|
130 |
-
"
|
131 |
}
|
132 |
|
133 |
-
def _generate_document(self, example,
|
134 |
return example_to_document(
|
135 |
-
example,
|
136 |
)
|
|
|
1 |
import dataclasses
|
2 |
+
import logging
|
3 |
from typing import Any, Callable, Dict, List, Optional
|
4 |
|
5 |
import datasets
|
|
|
6 |
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
|
7 |
+
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
|
8 |
+
from pytorch_ie.documents import (
|
9 |
+
TextBasedDocument,
|
10 |
+
TextDocumentWithLabeledSpansAndBinaryRelations,
|
11 |
+
)
|
12 |
|
13 |
+
from pie_datasets import GeneratorBasedBuilder
|
14 |
+
from pie_datasets.document.processing.text_span_trimmer import trim_text_spans
|
15 |
|
16 |
+
log = logging.getLogger(__name__)
|
17 |
|
18 |
|
19 |
def dl2ld(dict_of_lists):
|
20 |
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
|
21 |
|
22 |
|
23 |
+
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
|
24 |
+
return {k: [d[k] for d in list_of_dicts] for k in keys}
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
@dataclasses.dataclass(frozen=True)
|
|
|
31 |
|
32 |
|
33 |
@dataclasses.dataclass
|
34 |
+
class CDCPDocument(TextBasedDocument):
|
|
|
|
|
|
|
35 |
propositions: AnnotationList[LabeledSpan] = annotation_field(target="text")
|
36 |
relations: AnnotationList[BinaryRelation] = annotation_field(target="propositions")
|
37 |
urls: AnnotationList[Attribute] = annotation_field(target="propositions")
|
|
|
39 |
|
40 |
def example_to_document(
|
41 |
example: Dict[str, Any],
|
42 |
+
relation_label: datasets.ClassLabel,
|
43 |
+
proposition_label: datasets.ClassLabel,
|
44 |
):
|
45 |
document = CDCPDocument(id=example["id"], text=example["text"])
|
46 |
for proposition_dict in dl2ld(example["propositions"]):
|
47 |
proposition = LabeledSpan(
|
48 |
start=proposition_dict["start"],
|
49 |
end=proposition_dict["end"],
|
50 |
+
label=proposition_label.int2str(proposition_dict["label"]),
|
51 |
)
|
52 |
document.propositions.append(proposition)
|
53 |
if proposition_dict.get("url", "") != "":
|
|
|
58 |
relation = BinaryRelation(
|
59 |
head=document.propositions[relation_dict["head"]],
|
60 |
tail=document.propositions[relation_dict["tail"]],
|
61 |
+
label=relation_label.int2str(relation_dict["label"]),
|
62 |
)
|
63 |
document.relations.append(relation)
|
64 |
|
|
|
67 |
|
68 |
def document_to_example(
|
69 |
document: CDCPDocument,
|
70 |
+
relation_label: datasets.ClassLabel,
|
71 |
+
proposition_label: datasets.ClassLabel,
|
72 |
) -> Dict[str, Any]:
|
73 |
result = {"id": document.id, "text": document.text}
|
74 |
proposition2dict = {}
|
|
|
77 |
proposition2dict[proposition] = {
|
78 |
"start": proposition.start,
|
79 |
"end": proposition.end,
|
80 |
+
"label": proposition_label.str2int(proposition.label),
|
81 |
"url": "",
|
82 |
}
|
83 |
proposition2idx[proposition] = idx
|
|
|
92 |
{
|
93 |
"head": proposition2idx[relation.head],
|
94 |
"tail": proposition2idx[relation.tail],
|
95 |
+
"label": relation_label.str2int(relation.label),
|
96 |
}
|
97 |
for relation in document.relations
|
98 |
]
|
|
|
101 |
return result
|
102 |
|
103 |
|
104 |
+
def convert_to_text_document_with_labeled_spans_and_binary_relations(
|
105 |
+
document: CDCPDocument,
|
106 |
+
verbose: bool = True,
|
107 |
+
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
|
108 |
+
doc_simplified = document.as_type(
|
109 |
+
TextDocumentWithLabeledSpansAndBinaryRelations,
|
110 |
+
field_mapping={"propositions": "labeled_spans", "relations": "binary_relations"},
|
111 |
+
)
|
112 |
+
result = trim_text_spans(
|
113 |
+
doc_simplified,
|
114 |
+
layer="labeled_spans",
|
115 |
+
verbose=verbose,
|
116 |
+
)
|
117 |
+
return result
|
118 |
|
119 |
|
120 |
+
class CDCP(GeneratorBasedBuilder):
|
121 |
DOCUMENT_TYPE = CDCPDocument
|
122 |
|
123 |
+
DOCUMENT_CONVERTERS = {
|
124 |
+
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
|
125 |
+
}
|
126 |
+
|
127 |
BASE_DATASET_PATH = "DFKI-SLT/cdcp"
|
128 |
|
129 |
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]
|
|
|
132 |
|
133 |
def _generate_document_kwargs(self, dataset):
|
134 |
return {
|
135 |
+
"relation_label": dataset.features["relations"].feature["label"],
|
136 |
+
"proposition_label": dataset.features["propositions"].feature["label"],
|
137 |
}
|
138 |
|
139 |
+
def _generate_document(self, example, relation_label, proposition_label):
|
140 |
return example_to_document(
|
141 |
+
example, relation_label=relation_label, proposition_label=proposition_label
|
142 |
)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pie-datasets>=0.3.0
|