File size: 9,944 Bytes
6641849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import logging
from dataclasses import dataclass
from typing import Any, Dict, Optional

import datasets
from pytorch_ie import AnnotationLayer, Document, annotation_field
from pytorch_ie.annotations import BinaryRelation, LabeledSpan, Span
from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations

from pie_datasets import ArrowBasedBuilder

logger = logging.getLogger(__name__)


@dataclass(frozen=True)
class NamedSpan(Span):
    name: str

    def resolve(self) -> Any:
        return self.name, super().resolve()


@dataclass(frozen=True)
class SpanWithNameAndType(Span):
    name: str
    type: str

    def resolve(self) -> Any:
        return self.name, self.type, super().resolve()


@dataclass
class ComagcDocument(Document):
    pmid: str
    sentence: str
    cge: str
    ccs: str
    cancer_type: str
    gene: AnnotationLayer[NamedSpan] = annotation_field(target="sentence")
    cancer: AnnotationLayer[NamedSpan] = annotation_field(target="sentence")
    pt: Optional[str] = None
    ige: Optional[str] = None
    expression_change_keyword1: AnnotationLayer[SpanWithNameAndType] = annotation_field(
        target="sentence"
    )
    expression_change_keyword2: AnnotationLayer[SpanWithNameAndType] = annotation_field(
        target="sentence"
    )


def example_to_document(example) -> ComagcDocument:
    doc = ComagcDocument(
        pmid=example["pmid"],
        sentence=example["sentence"],
        cancer_type=example["cancer_type"],
        cge=example["CGE"],
        ccs=example["CCS"],
        pt=example["PT"],
        ige=example["IGE"],
    )

    # Gene and cancer entities
    # name is (almost) always the text of the gene/cancer (between the start and end position)
    gene = NamedSpan(
        start=example["gene"]["pos"][0],
        end=example["gene"]["pos"][1] + 1,
        name=example["gene"]["name"],
    )
    doc.gene.extend([gene])

    cancer = NamedSpan(
        start=example["cancer"]["pos"][0],
        end=example["cancer"]["pos"][1] + 1,
        name=example["cancer"]["name"],
    )
    doc.cancer.extend([cancer])

    # Expression change keywords
    # expression_change_keyword_1 might have no values
    if example["expression_change_keyword_1"]["pos"] is not None:
        expression_change_keyword1 = SpanWithNameAndType(
            start=example["expression_change_keyword_1"]["pos"][0],
            end=example["expression_change_keyword_1"]["pos"][1] + 1,
            name=example["expression_change_keyword_1"]["name"],
            type=example["expression_change_keyword_1"]["type"],
        )
        doc.expression_change_keyword1.extend([expression_change_keyword1])

    expression_change_keyword2 = SpanWithNameAndType(
        start=example["expression_change_keyword_2"]["pos"][0],
        end=example["expression_change_keyword_2"]["pos"][1] + 1,
        name=example["expression_change_keyword_2"]["name"],
        type=example["expression_change_keyword_2"]["type"],
    )
    doc.expression_change_keyword2.extend([expression_change_keyword2])

    return doc


def document_to_example(doc: ComagcDocument) -> Dict[str, Any]:
    gene = {
        "name": doc.gene[0].name,
        "pos": [doc.gene[0].start, doc.gene[0].end - 1],
    }
    cancer = {
        "name": doc.cancer[0].name,
        "pos": [doc.cancer[0].start, doc.cancer[0].end - 1],
    }

    if not doc.expression_change_keyword1.resolve():
        expression_change_keyword_1 = {
            "name": "\nNone\n",
            "pos": None,
            "type": None,
        }
    else:
        expression_change_keyword_1 = {
            "name": doc.expression_change_keyword1[0].name,
            "pos": [
                doc.expression_change_keyword1[0].start,
                doc.expression_change_keyword1[0].end - 1,
            ],
            "type": doc.expression_change_keyword1[0].type,
        }

    expression_change_keyword_2 = {
        "name": doc.expression_change_keyword2[0].name,
        "pos": [
            doc.expression_change_keyword2[0].start,
            doc.expression_change_keyword2[0].end - 1,
        ],
        "type": doc.expression_change_keyword2[0].type,
    }

    return {
        "pmid": doc.pmid,
        "sentence": doc.sentence,
        "cancer_type": doc.cancer_type,
        "gene": gene,
        "cancer": cancer,
        "CGE": doc.cge,
        "CCS": doc.ccs,
        "PT": doc.pt,
        "IGE": doc.ige,
        "expression_change_keyword_1": expression_change_keyword_1,
        "expression_change_keyword_2": expression_change_keyword_2,
    }


def convert_to_text_document_with_labeled_spans_and_binary_relations(
    document: ComagcDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
    metadata = {
        "cancer_type": document.cancer_type,
        "CGE": document.cge,
        "CCS": document.ccs,
        "PT": document.pt,
        "IGE": document.ige,
        "expression_change_keyword_1": document_to_example(document)[
            "expression_change_keyword_1"
        ],
        "expression_change_keyword_2": document_to_example(document)[
            "expression_change_keyword_2"
        ],
    }

    text_document = TextDocumentWithLabeledSpansAndBinaryRelations(
        id=document.pmid, text=document.sentence, metadata=metadata
    )

    gene = LabeledSpan(
        start=document.gene[0].start,
        end=document.gene[0].end,
        label="GENE",
    )
    text_document.labeled_spans.append(gene)

    cancer = LabeledSpan(
        start=document.cancer[0].start,
        end=document.cancer[0].end,
        label="CANCER",
    )
    text_document.labeled_spans.append(cancer)

    label = get_relation_label(
        cge=document.cge, ccs=document.ccs, ige=document.ige, pt=document.pt
    )

    if label is not None:
        relation = BinaryRelation(
            head=gene,
            tail=cancer,
            label=label,
        )
        text_document.binary_relations.append(relation)

    return text_document


class Comagc(ArrowBasedBuilder):
    DOCUMENT_TYPE = ComagcDocument
    BASE_DATASET_PATH = "DFKI-SLT/CoMAGC"
    BASE_DATASET_REVISION = "8e2950b8a3967c2f45de86f60dd5c8ccb9ad3815"

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            version=datasets.Version("1.0.0"),
            description="CoMAGC dataset",
        )
    ]

    DOCUMENT_CONVERTERS = {
        TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
    }

    def _generate_document(self, example, **kwargs):
        return example_to_document(example)

    def _generate_example(self, document: ComagcDocument, **kwargs) -> Dict[str, Any]:
        return document_to_example(document)


def get_relation_label(cge: str, ccs: str, pt: str, ige: str) -> Optional[str]:
    """Simple rule-based function to determine the relation between the gene and the cancer.

    As this dataset contains a multi-faceted annotation scheme
    for gene-cancer relations, it does not only label the relation
    between gene and cancer, but provides further information.
    However, the relation of interest stays the gene-class,
    which can be derived from inference rules
    (https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-323/tables/3), based on the
    information given in columns CGE, CCS, IGE, PT.
    """

    rules = [
        {
            "CGE": "increased",
            "CCS": "normalTOcancer",
            "IGE": "*",
            "PT": "causality",
            "Gene class": "oncogene",
        },
        {
            "CGE": "decreased",
            "CCS": "cancerTOnormal",
            "IGE": "unidentifiable",
            "PT": "causality",
            "Gene class": "oncogene",
        },
        {
            "CGE": "decreased",
            "CCS": "cancerTOnormal",
            "IGE": "up-regulated",
            "PT": "*",
            "Gene class": "oncogene",
        },
        {
            "CGE": "decreased",
            "CCS": "normalTOcancer",
            "IGE": "*",
            "PT": "causality",
            "Gene class": "tumor suppressor gene",
        },
        {
            "CGE": "increased",
            "CCS": "cancerTOnormal",
            "IGE": "unidentifiable",
            "PT": "causality",
            "Gene class": "tumor suppressor gene",
        },
        {
            "CGE": "increased",
            "CCS": "cancerTOnormal",
            "IGE": "down-regulated",
            "PT": "*",
            "Gene class": "tumor suppressor gene",
        },
        {
            "CGE": "*",
            "CCS": "normalTOcancer",
            "IGE": "*",
            "PT": "observation",
            "Gene class": "biomarker",
        },
        {
            "CGE": "*",
            "CCS": "cancerTOnormal",
            "IGE": "unidentifiable",
            "PT": "observation",
            "Gene class": "biomarker",
        },
        {
            "CGE": "decreased",
            "CCS": "cancerTOcancer",
            "IGE": "up-regulated",
            "PT": "observation",
            "Gene class": "biomarker",
        },
        {
            "CGE": "increased",
            "CCS": "cancerTOcancer",
            "IGE": "down-regulated",
            "PT": "observation",
            "Gene class": "biomarker",
        },
    ]

    for rule in rules:
        if (
            (rule["CGE"] == "*" or cge == rule["CGE"])
            and (rule["CCS"] == "*" or ccs == rule["CCS"])
            and (rule["IGE"] == "*" or ige == rule["IGE"])
            and (rule["PT"] == "*" or pt == rule["PT"])
        ):
            return rule["Gene class"]

    # Commented out to avoid spamming the logs
    # logger.warning("No rule matched. cge: " + cge + " - ccs: " + ccs + " - ige: " + ige + " - pt: " + pt)
    # NOTE: In case no inference rule is applicable, no relation is returned and
    #       eventually no relation is added to the document.
    return None