File size: 9,068 Bytes
1ef2db4
 
 
 
d0a3f11
 
1ef2db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06be6e9
1ef2db4
 
 
 
 
 
 
 
 
06be6e9
1ef2db4
 
 
 
 
 
 
06be6e9
 
 
 
1ef2db4
06be6e9
 
1ef2db4
 
06be6e9
 
1ef2db4
 
 
06be6e9
 
 
1ef2db4
 
 
 
 
 
06be6e9
1ef2db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06be6e9
1ef2db4
 
 
 
 
 
 
06be6e9
 
 
 
1ef2db4
06be6e9
 
1ef2db4
 
06be6e9
 
1ef2db4
 
 
06be6e9
 
 
1ef2db4
 
 
06be6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef2db4
 
 
 
 
 
 
d0a3f11
 
1ef2db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06be6e9
1ef2db4
 
 
 
 
 
 
06be6e9
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from dataclasses import dataclass
from typing import Any, Dict, Optional, Union

import datasets
from pytorch_ie.annotations import BinaryRelation, LabeledSpan
from pytorch_ie.documents import (
    AnnotationLayer,
    TextBasedDocument,
    TextDocumentWithLabeledSpansAndBinaryRelations,
    TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
    annotation_field,
)

from pie_datasets import GeneratorBasedBuilder


@dataclass
class DrugprotDocument(TextBasedDocument):
    title: Optional[str] = None
    abstract: Optional[str] = None
    entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
    relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities")


@dataclass
class DrugprotBigbioDocument(TextBasedDocument):
    passages: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
    entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text")
    relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities")


def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument:
    metadata = {"entity_ids": [], "relation_ids": []}
    id2labeled_span: Dict[str, LabeledSpan] = {}

    document = DrugprotDocument(
        text=example["text"],
        title=example["title"],
        abstract=example["abstract"],
        id=example["document_id"],
        metadata=metadata,
    )

    for span in example["entities"]:
        labeled_span = LabeledSpan(
            start=span["offset"][0],
            end=span["offset"][1],
            label=span["type"],
        )
        document.entities.append(labeled_span)
        entity_id = span["id"].split("_")[1]
        document.metadata["entity_ids"].append(entity_id)
        id2labeled_span[entity_id] = labeled_span

    for relation in example["relations"]:
        arg1_id = relation["arg1_id"].split("_")[1]
        arg2_id = relation["arg2_id"].split("_")[1]
        document.relations.append(
            BinaryRelation(
                head=id2labeled_span[arg1_id],
                tail=id2labeled_span[arg2_id],
                label=relation["type"],
            )
        )
        relation_id = "R" + relation["id"].split("_")[1]
        document.metadata["relation_ids"].append(relation_id)

    return document


def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument:
    text = " ".join([" ".join(passage["text"]) for passage in example["passages"]])
    doc_id = example["document_id"]
    metadata = {"entity_ids": [], "relation_ids": []}
    id2labeled_span: Dict[str, LabeledSpan] = {}

    document = DrugprotBigbioDocument(
        text=text,
        id=doc_id,
        metadata=metadata,
    )
    for passage in example["passages"]:
        document.passages.append(
            LabeledSpan(
                start=passage["offsets"][0][0],
                end=passage["offsets"][0][1],
                label=passage["type"],
            )
        )
    # We sort labels and relation to always have a deterministic order for testing purposes.
    for span in example["entities"]:
        labeled_span = LabeledSpan(
            start=span["offsets"][0][0],
            end=span["offsets"][0][1],
            label=span["type"],
        )
        document.entities.append(labeled_span)
        entity_id = span["id"].split("_")[1]
        document.metadata["entity_ids"].append(entity_id)
        id2labeled_span[entity_id] = labeled_span

    for relation in example["relations"]:
        arg1_id = relation["arg1_id"].split("_")[1]
        arg2_id = relation["arg2_id"].split("_")[1]
        document.relations.append(
            BinaryRelation(
                head=id2labeled_span[arg1_id],
                tail=id2labeled_span[arg2_id],
                label=relation["type"],
            )
        )
        relation_id = "R" + relation["id"].split("_")[1]
        document.metadata["relation_ids"].append(relation_id)

    return document


def drugprot2example(doc: DrugprotDocument) -> Dict[str, Any]:
    entities = []
    for i, entity in enumerate(doc.entities):
        entities.append(
            {
                "id": doc.id + "_" + doc.metadata["entity_ids"][i],
                "type": entity.label,
                "text": doc.text[entity.start : entity.end],
                "offset": [entity.start, entity.end],
            }
        )

    relations = []
    for i, relation in enumerate(doc.relations):
        relations.append(
            {
                "id": doc.id + "_" + doc.metadata["relation_ids"][i][1:],
                "arg1_id": doc.id
                + "_"
                + doc.metadata["entity_ids"][doc.entities.index(relation.head)],
                "arg2_id": doc.id
                + "_"
                + doc.metadata["entity_ids"][doc.entities.index(relation.tail)],
                "type": relation.label,
            }
        )

    return {
        "document_id": doc.id,
        "title": doc.title,
        "abstract": doc.abstract,
        "text": doc.text,
        "entities": entities,
        "relations": relations,
    }


def drugprot_bigbio2example(doc: DrugprotBigbioDocument) -> Dict[str, Any]:
    entities = []
    for i, entity in enumerate(doc.entities):
        entities.append(
            {
                "id": doc.id + "_" + doc.metadata["entity_ids"][i],
                "normalized": [],
                "offsets": [[entity.start, entity.end]],
                "type": entity.label,
                "text": [doc.text[entity.start : entity.end]],
            }
        )

    relations = []
    for i, relation in enumerate(doc.relations):
        relations.append(
            {
                "id": doc.id + "_" + doc.metadata["relation_ids"][i][1:],
                "arg1_id": doc.id
                + "_"
                + doc.metadata["entity_ids"][doc.entities.index(relation.head)],
                "arg2_id": doc.id
                + "_"
                + doc.metadata["entity_ids"][doc.entities.index(relation.tail)],
                "normalized": [],
                "type": relation.label,
            }
        )

    passages = []
    for passage in doc.passages:
        passages.append(
            {
                "id": doc.id + "_" + passage.label,
                "text": [doc.text[passage.start : passage.end]],
                "offsets": [[passage.start, passage.end]],
                "type": passage.label,
            }
        )

    return {
        "coreferences": [],
        "document_id": doc.id,
        "entities": entities,
        "events": [],
        "id": doc.id,
        "passages": passages,
        "relations": relations,
    }


class Drugprot(GeneratorBasedBuilder):
    DOCUMENT_TYPES = {
        "drugprot_source": DrugprotDocument,
        "drugprot_bigbio_kb": DrugprotBigbioDocument,
    }

    BASE_DATASET_PATH = "bigbio/drugprot"
    # This revision includes the "test_background" split (see https://github.com/bigscience-workshop/biomedical/pull/928)
    BASE_DATASET_REVISION = "0cc98b3d292242e69adcfd2c3e5eea94baaca8ea"

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="drugprot_source",
            version=datasets.Version("1.0.2"),
            description="DrugProt source version",
        ),
        datasets.BuilderConfig(
            name="drugprot_bigbio_kb",
            version=datasets.Version("1.0.0"),
            description="DrugProt BigBio version",
        ),
    ]

    @property
    def document_converters(self):
        if self.config.name == "drugprot_source":
            return {
                TextDocumentWithLabeledSpansAndBinaryRelations: {
                    "entities": "labeled_spans",
                    "relations": "binary_relations",
                }
            }
        elif self.config.name == "drugprot_bigbio_kb":
            return {
                TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: {
                    "passages": "labeled_partitions",
                    "entities": "labeled_spans",
                    "relations": "binary_relations",
                }
            }
        else:
            raise ValueError(f"Unknown dataset name: {self.config.name}")

    def _generate_document(
        self, example: Dict[str, Any], **kwargs
    ) -> Union[DrugprotDocument, DrugprotBigbioDocument]:
        if self.config.name == "drugprot_source":
            return example2drugprot(example)
        elif self.config.name == "drugprot_bigbio_kb":
            return example2drugprot_bigbio(example)
        else:
            raise ValueError(f"Unknown dataset config name: {self.config.name}")

    def _generate_example(
        self, document: Union[DrugprotDocument, DrugprotBigbioDocument], **kwargs
    ) -> Dict[str, Any]:
        if isinstance(document, DrugprotBigbioDocument):
            return drugprot_bigbio2example(document)
        elif isinstance(document, DrugprotDocument):
            return drugprot2example(document)
        else:
            raise ValueError(f"Unknown document type: {type(document)}")