from dataclasses import dataclass from typing import Any, Dict, Optional, Union import datasets from pytorch_ie.annotations import BinaryRelation, LabeledSpan from pytorch_ie.documents import ( AnnotationLayer, TextBasedDocument, TextDocumentWithLabeledSpansAndBinaryRelations, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions, annotation_field, ) from pie_datasets import GeneratorBasedBuilder @dataclass class DrugprotDocument(TextBasedDocument): title: Optional[str] = None abstract: Optional[str] = None entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text") relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities") @dataclass class DrugprotBigbioDocument(TextBasedDocument): passages: AnnotationLayer[LabeledSpan] = annotation_field(target="text") entities: AnnotationLayer[LabeledSpan] = annotation_field(target="text") relations: AnnotationLayer[BinaryRelation] = annotation_field(target="entities") def example2drugprot(example: Dict[str, Any]) -> DrugprotDocument: metadata = {"entity_ids": [], "relation_ids": []} id2labeled_span: Dict[str, LabeledSpan] = {} document = DrugprotDocument( text=example["text"], title=example["title"], abstract=example["abstract"], id=example["document_id"], metadata=metadata, ) for span in example["entities"]: labeled_span = LabeledSpan( start=span["offset"][0], end=span["offset"][1], label=span["type"], ) document.entities.append(labeled_span) entity_id = span["id"].split("_")[1] document.metadata["entity_ids"].append(entity_id) id2labeled_span[entity_id] = labeled_span for relation in example["relations"]: arg1_id = relation["arg1_id"].split("_")[1] arg2_id = relation["arg2_id"].split("_")[1] document.relations.append( BinaryRelation( head=id2labeled_span[arg1_id], tail=id2labeled_span[arg2_id], label=relation["type"], ) ) relation_id = "R" + relation["id"].split("_")[1] document.metadata["relation_ids"].append(relation_id) return document def example2drugprot_bigbio(example: Dict[str, Any]) -> DrugprotBigbioDocument: text = " ".join([" ".join(passage["text"]) for passage in example["passages"]]) doc_id = example["document_id"] metadata = {"entity_ids": [], "relation_ids": []} id2labeled_span: Dict[str, LabeledSpan] = {} document = DrugprotBigbioDocument( text=text, id=doc_id, metadata=metadata, ) for passage in example["passages"]: document.passages.append( LabeledSpan( start=passage["offsets"][0][0], end=passage["offsets"][0][1], label=passage["type"], ) ) # We sort labels and relation to always have a deterministic order for testing purposes. for span in example["entities"]: labeled_span = LabeledSpan( start=span["offsets"][0][0], end=span["offsets"][0][1], label=span["type"], ) document.entities.append(labeled_span) entity_id = span["id"].split("_")[1] document.metadata["entity_ids"].append(entity_id) id2labeled_span[entity_id] = labeled_span for relation in example["relations"]: arg1_id = relation["arg1_id"].split("_")[1] arg2_id = relation["arg2_id"].split("_")[1] document.relations.append( BinaryRelation( head=id2labeled_span[arg1_id], tail=id2labeled_span[arg2_id], label=relation["type"], ) ) relation_id = "R" + relation["id"].split("_")[1] document.metadata["relation_ids"].append(relation_id) return document def drugprot2example(doc: DrugprotDocument) -> Dict[str, Any]: entities = [] for i, entity in enumerate(doc.entities): entities.append( { "id": doc.id + "_" + doc.metadata["entity_ids"][i], "type": entity.label, "text": doc.text[entity.start : entity.end], "offset": [entity.start, entity.end], } ) relations = [] for i, relation in enumerate(doc.relations): relations.append( { "id": doc.id + "_" + doc.metadata["relation_ids"][i][1:], "arg1_id": doc.id + "_" + doc.metadata["entity_ids"][doc.entities.index(relation.head)], "arg2_id": doc.id + "_" + doc.metadata["entity_ids"][doc.entities.index(relation.tail)], "type": relation.label, } ) return { "document_id": doc.id, "title": doc.title, "abstract": doc.abstract, "text": doc.text, "entities": entities, "relations": relations, } def drugprot_bigbio2example(doc: DrugprotBigbioDocument) -> Dict[str, Any]: entities = [] for i, entity in enumerate(doc.entities): entities.append( { "id": doc.id + "_" + doc.metadata["entity_ids"][i], "normalized": [], "offsets": [[entity.start, entity.end]], "type": entity.label, "text": [doc.text[entity.start : entity.end]], } ) relations = [] for i, relation in enumerate(doc.relations): relations.append( { "id": doc.id + "_" + doc.metadata["relation_ids"][i][1:], "arg1_id": doc.id + "_" + doc.metadata["entity_ids"][doc.entities.index(relation.head)], "arg2_id": doc.id + "_" + doc.metadata["entity_ids"][doc.entities.index(relation.tail)], "normalized": [], "type": relation.label, } ) passages = [] for passage in doc.passages: passages.append( { "id": doc.id + "_" + passage.label, "text": [doc.text[passage.start : passage.end]], "offsets": [[passage.start, passage.end]], "type": passage.label, } ) return { "coreferences": [], "document_id": doc.id, "entities": entities, "events": [], "id": doc.id, "passages": passages, "relations": relations, } class Drugprot(GeneratorBasedBuilder): DOCUMENT_TYPES = { "drugprot_source": DrugprotDocument, "drugprot_bigbio_kb": DrugprotBigbioDocument, } BASE_DATASET_PATH = "bigbio/drugprot" # This revision includes the "test_background" split (see https://github.com/bigscience-workshop/biomedical/pull/928) BASE_DATASET_REVISION = "0cc98b3d292242e69adcfd2c3e5eea94baaca8ea" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="drugprot_source", version=datasets.Version("1.0.2"), description="DrugProt source version", ), datasets.BuilderConfig( name="drugprot_bigbio_kb", version=datasets.Version("1.0.0"), description="DrugProt BigBio version", ), ] @property def document_converters(self): if self.config.name == "drugprot_source": return { TextDocumentWithLabeledSpansAndBinaryRelations: { "entities": "labeled_spans", "relations": "binary_relations", } } elif self.config.name == "drugprot_bigbio_kb": return { TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: { "passages": "labeled_partitions", "entities": "labeled_spans", "relations": "binary_relations", } } else: raise ValueError(f"Unknown dataset name: {self.config.name}") def _generate_document( self, example: Dict[str, Any], **kwargs ) -> Union[DrugprotDocument, DrugprotBigbioDocument]: if self.config.name == "drugprot_source": return example2drugprot(example) elif self.config.name == "drugprot_bigbio_kb": return example2drugprot_bigbio(example) else: raise ValueError(f"Unknown dataset config name: {self.config.name}") def _generate_example( self, document: Union[DrugprotDocument, DrugprotBigbioDocument], **kwargs ) -> Dict[str, Any]: if isinstance(document, DrugprotBigbioDocument): return drugprot_bigbio2example(document) elif isinstance(document, DrugprotDocument): return drugprot2example(document) else: raise ValueError(f"Unknown document type: {type(document)}")