File size: 22,199 Bytes
f4ff05c 982d568 f4ff05c 982d568 f4ff05c 68770c9 982d568 f4ff05c 982d568 f4ff05c 982d568 f4ff05c 982d568 f4ff05c 982d568 2b58efe 982d568 2b58efe 982d568 68770c9 982d568 68770c9 982d568 68770c9 982d568 68770c9 982d568 2b58efe 982d568 2b58efe 982d568 2b58efe 982d568 2b58efe 982d568 171478c 982d568 2b58efe 171478c 2b58efe 982d568 171478c 982d568 171478c 982d568 2b58efe 982d568 68770c9 2b58efe 982d568 2b58efe 982d568 2b58efe 982d568 2b58efe 68770c9 2b58efe 68770c9 2b58efe 68770c9 982d568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# PIE Dataset Card for "sciarg"
This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the SciArg dataset ([paper](https://aclanthology.org/W18-5206/) and [data repository](https://github.com/anlausch/sciarg_resource_analysis)). Since the SciArg dataset is published in the [BRAT standoff format](https://brat.nlplab.org/standoff.html), this dataset builder is based on the [PyTorch-IE brat dataset loading script](https://huggingface.co/datasets/pie/brat).
Therefore, the `sciarg` dataset as described here follows the data structure from the [PIE brat dataset card](https://huggingface.co/datasets/pie/brat).
### Usage
```python
from pie_datasets import load_dataset
from pie_datasets.builders.brat import BratDocumentWithMergedSpans, BratDocument
from pytorch_ie.documents import TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
# load default version
dataset = load_dataset("pie/sciarg")
assert isinstance(dataset["train"][0], BratDocumentWithMergedSpans)
# if required, normalize the document type (see section Document Converters below)
dataset_converted = dataset.to_document_type(TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions)
assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions)
# load version with resolved parts_of_same relations
dataset = load_dataset("pie/sciarg", name='resolve_parts_of_same')
assert isinstance(dataset["train"][0], BratDocument)
# if required, normalize the document type (see section Document Converters below)
dataset_converted = dataset.to_document_type(TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions)
assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions)
# get first relation in the first document
doc = dataset_converted["train"][0]
print(doc.binary_relations[0])
# BinaryRelation(head=LabeledMultiSpan(slices=((15071, 15076),), label='data', score=1.0), tail=LabeledMultiSpan(slices=((14983, 15062),), label='background_claim', score=1.0), label='supports', score=1.0)
print(doc.binary_relations[0].resolve())
# ('supports', (('data', ('[ 3 ]',)), ('background_claim', ('PSD and improved example-based schemes have been discussed in many publications',))))
```
### Dataset Summary
The SciArg dataset is an extension of the Dr. Inventor corpus (Fisas et al., [2015](https://aclanthology.org/W15-1605.pdf), [2016](https://aclanthology.org/L16-1492.pdf)) with an annotation layer containing
fine-grained argumentative components and relations, believing that argumentation needs to
be studied in combination with other rhetorical aspects. It is the first publicly-available argument-annotated corpus of scientific publications (in English), which allows for joint analyses of argumentation and other
rhetorical dimensions of scientific writing." ([Lauscher et al., 2018](<(https://aclanthology.org/W18-5206/)>), pp. 40-41)
### Supported Tasks and Leaderboards
- **Tasks**: Argumentation Mining, Component Identification, Relation Identification
- **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
The language in the dataset is English (scientific academic publications on computer graphics).
### Dataset Variants
The `sciarg` dataset comes in two versions: `default` and `resolve_parts_of_same`.
First, the `default` version with `BratDocumentWithMergedSpans` as document type.
In contrast to the base `brat` dataset, where the document type for the `default` variant is `BratDocument`,
the SciArg dataset was published with spans that are just fragmented by whitespace which seems
to be because of the annotation tool used. In the `sciarg` dataset, we merge these fragments, so that the document type
can be `BratDocumentWithMergedSpans` (this is easier to handle for most of the task modules).
Fragmented spans, which belong to the same argumentative unit, are marked with `parts_of_same` relations.
Second, the `resolve_parts_of_same` version with `BratDocument` as document type.
In this version, all fragmented spans which were separated by other argumentative or non-argumentative spans and
are connected via the `parts_of_same` relations are converted to `LabeledMultiSpans`.
### Data Schema
See [PIE-Brat Data Schema](https://huggingface.co/datasets/pie/brat#data-schema).
### Document Converters
The dataset provides document converters for the following target document types:
- `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations`
- `LabeledSpans`, converted from `BratDocument`'s `spans`
- labels: `background_claim`, `own_claim`, `data`
- if `spans` contain whitespace at the beginning and/or the end, the whitespace are trimmed out.
- `BinraryRelations`, converted from `BratDocument`'s `relations`
- labels: `supports`, `contradicts`, `semantically_same`, `parts_of_same`
- if the `relations` label is `semantically_same` or `parts_of_same`, they are merged if they are the same arguments after sorting.
- `pytorch_ie.documents.TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions`
- `LabeledSpans`, as above
- `BinaryRelations`, as above
- `LabeledPartitions`, partitioned `BratDocument`'s `text`, according to the paragraph, using regex.
- labels: `title`, `abstract`, `H1`
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
definitions.
### Data Splits
The dataset consists of a single `train` split that has 40 documents.
For detailed statistics on the corpus, see Lauscher et al. ([2018](<(https://aclanthology.org/W18-5206/)>), p. 43), and the author's [resource analysis](https://github.com/anlausch/sciarg_resource_analysis).
### Label Descriptions and Statistics
In this section, we report our own corpus' statistics; however, there are currently discrepancies in label counts between our report and:
- previous report in [Lauscher et al., 2018](https://aclanthology.org/W18-5206/), p. 43),
- current report above here (labels counted in `BratDocumentWithMergedSpans`'s);
possibly since [Lauscher et al., 2018](https://aclanthology.org/W18-5206/) presents the numbers of the real argumentative components, whereas here discontinuous components are still split (marked with the `parts_of_same` helper relation) and, thus, count per fragment.
#### Components
`default` version:
| Components | Count | Percentage |
| ------------------ | ----: | ---------: |
| `background_claim` | 3291 | 24.2 % |
| `own_claim` | 6004 | 44.2 % |
| `data` | 4297 | 31.6 % |
| total | 13592 | 100.0 % |
`resolve_parts_of_same` version:
| Components | Count | Percentage |
| ------------------ | ----: | ---------: |
| `background_claim` | 2752 | 22.4 % |
| `own_claim` | 5450 | 44.3 % |
| `data` | 4093 | 33.3 % |
| total | 12295 | 100.0 % |
- `own_claim` is an argumentative statement that closely relates to the authors’ own work.
- `background_claim` an argumentative statement relating to the background of authors’ work, e.g., about related work or common practices.
- `data` component represents a fact that serves as evidence for or against a claim. Note that references or (factual) examples can also serve as data.
(Lauscher et al. 2018, p.41; following and simplified [Toulmin, 2003](https://www.cambridge.org/core/books/uses-of-argument/26CF801BC12004587B66778297D5567C))
#### Relations
`default` version:
| Relations | Count | Percentage |
| -------------------------- | ----: | ---------: |
| support: `supports` | 5789 | 74.0 % |
| attack: `contradicts` | 696 | 8.9 % |
| other: `semantically_same` | 44 | 0.6 % |
| other: `parts_of_same` | 1298 | 16.6 % |
| total | 7827 | 100.0 % |
`resolve_parts_of_same` version:
| Relations | Count | Percentage |
| -------------------------- | ----: | ---------: |
| support: `supports` | 5788 | 88.7 % |
| attack: `contradicts` | 696 | 10.7 % |
| other: `semantically_same` | 44 | 0.7 % |
| total | 6528 | 100.0 % |
##### Argumentative relations
- `supports`:
- if the assumed veracity of *b* increases with the veracity of *a*
- "Usually, this relationship exists from data to claim, but in many cases a claim might support another claim. Other combinations are still possible." - (*Annotation Guidelines*, p. 3)
- `contradicts`:
- if the assumed veracity of *b* decreases with the veracity of *a*
- It is a **bi-directional**, i.e., symmetric relationship.
##### Non-argumentative relations
- `semantically_same`: between two mentions of effectively the same claim or data component. Can be seen as *argument coreference*, analogous to entity, and *event coreference*. This relation is considered symmetric (i.e., **bidirectional**) and non-argumentative.
(Lauscher et al. 2018, p.41; following [Dung, 1995](https://www.sciencedirect.com/science/article/pii/000437029400041X?via%3Dihub))
- `parts_of_same` (only in the `default` dataset variant): when a single component is split up in several parts. It is **non-argumentative**, **bidirectional**, but also **intra-component**
(*Annotation Guidelines*, pp. 4-6)
There are currently discrepancies in label counts between
- previous report in [Lauscher et al., 2018](https://aclanthology.org/W18-5206/), p. 43),
- current report above here (labels counted in `BratDocument`'s);
possibly since [Lauscher et al., 2018](https://aclanthology.org/W18-5206/) presents the numbers of the real argumentative components, whereas here discontinuous components are still split (marked with the `parts_of_same` helper relation) and, thus, count per fragment.
#### Examples

Above: Diagram from *Annotation Guildelines* (p.6)
Below: Subset of relations in `A01`

### Collected Statistics after Document Conversion
We use the script `evaluate_documents.py` from [PyTorch-IE-Hydra-Template](https://github.com/ArneBinder/pytorch-ie-hydra-template-1) to generate these statistics.
After checking out that code, the statistics and plots can be generated by the command:
```commandline
python src/evaluate_documents.py dataset=sciarg_base metric=METRIC
```
From `default` version:
- `pie_modules.documents.TextDocumentWithLabeledSpansAndBinaryRelations`
- `labeled_spans`: `LabeledSpan` annotations, converted from `BratDocumentWithMergedSpans`'s `spans`
- labels: `background_claim`, `own_claim`, `data`
- if `spans` contain whitespace at the beginning and/or the end, that whitespace is trimmed out.
- `binary_relations`: `BinaryRelation` annotations, converted from `BratDocumentWithMergedSpans`'s `relations`
- labels: `supports`, `contradicts`, `semantically_same`, `parts_of_same`
- if the `relations` label is `semantically_same` or `parts_of_same` (i.e. it is a symmetric relation), their arguments are sorted by their start and end indices.
- `pie_modules.documents.TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions`
- `labeled_spans`, as above
- `binary_relations`, as above
- `labeled_partitions`, `LabeledSpan` annotations, created from splitting `BratDocumentWithMergedSpans`'s `text` at new paragraph in `xml` format.
- labels: `title`, `abstract`, `H1`
From `resolve_parts_of_same` version:
- `pie_modules.documents.TextDocumentWithLabeledMultiSpansAndBinaryRelations`:
- `labeled_multi_spans`: `LabeledMultiSpan` annotations, converted from `BratDocument`'s `spans`
- labels: as above
- if spans contain whitespace at the beginning and/or the end, that whitespace is trimmed out.
- `binary_relations`: `BinaryRelation` annotations, converted from `BratDocument`'s `relations`
- labels: `supports`, `contradicts`, `semantically_same`
- in contrast to the `default` version, spans connected with `parts_of_same` relation are stored as one labeled multi-span
- if the `relations` label is `semantically_same` (i.e. it is a symmetric relation), their arguments are sorted by their start and end indices.
- `pie_modules.documents.TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions`:
- `labeled_multi_spans`, as above
- `binary_relations`, as above
- `labeled_partitions`, `LabeledSpan` annotations, created from splitting `BratDocument`'s `text` at new paragraph in `xml` format.
- labels: `title`, `abstract`, `H1`
This also requires to have the following dataset config in `configs/dataset/sciarg_base.yaml` of this dataset within the repo directory:
```commandline
_target_: src.utils.execute_pipeline
input:
_target_: pie_datasets.DatasetDict.load_dataset
path: pie/sciarg
revision: 982d5682ba414ee13cf92cb93ec18fc8e78e2b81
```
For token based metrics, this uses `bert-base-uncased` from `transformer.AutoTokenizer` (see [AutoTokenizer](https://huggingface.co/docs/transformers/v4.37.1/en/model_doc/auto#transformers.AutoTokenizer), and [bert-based-uncased](https://huggingface.co/bert-base-uncased) to tokenize `text` in `TextDocumentWithLabeledSpansAndBinaryRelations` (see [document type](https://github.com/ArneBinder/pie-modules/blob/main/src/pie_modules/documents.py)).
#### Relation argument (outer) token distance per label
The distance is measured from the first token of the first argumentative unit to the last token of the last unit, a.k.a. outer distance.
We collect the following statistics: number of documents in the split (*no. doc*), no. of relations (*len*), mean of token distance (*mean*), standard deviation of the distance (*std*), minimum outer distance (*min*), and maximum outer distance (*max*).
We also present histograms in the collapsible, showing the distribution of these relation distances (x-axis; and unit-counts in y-axis), accordingly.
<details>
<summary>Command</summary>
```
python src/evaluate_documents.py dataset=sciarg_base metric=relation_argument_token_distances
```
</details>
| | len | max | mean | min | std |
| :---------------- | ----: | ---: | ------: | --: | ------: |
| ALL | 15640 | 2864 | 30.524 | 3 | 45.351 |
| contradicts | 1392 | 238 | 32.565 | 6 | 19.771 |
| parts_of_same | 2594 | 374 | 28.18 | 3 | 26.845 |
| semantically_same | 84 | 2864 | 206.333 | 11 | 492.268 |
| supports | 11570 | 407 | 29.527 | 4 | 24.189 |
<details>
<summary>Histogram (split: train, 40 documents)</summary>

</details>
#### Span lengths (tokens)
The span length is measured from the first token of the first argumentative unit to the last token of the particular unit.
We collect the following statistics: number of documents in the split (*no. doc*), no. of spans (*len*), mean of number of tokens in a span (*mean*), standard deviation of the number of tokens (*std*), minimum tokens in a span (*min*), and maximum tokens in a span (*max*).
We also present histograms in the collapsible, showing the distribution of these token-numbers (x-axis; and unit-counts in y-axis), accordingly.
<details>
<summary>Command</summary>
```
python src/evaluate_documents.py dataset=sciarg_base metric=span_lengths_tokens
```
</details>
| statistics | train |
| :--------- | -----: |
| no. doc | 40 |
| len | 13586 |
| mean | 11.677 |
| std | 8.731 |
| min | 1 |
| max | 138 |
<details>
<summary>Histogram (split: train, 40 documents)</summary>

</details>
#### Token length (tokens)
The token length is measured from the first token of the document to the last one.
We collect the following statistics: number of documents in the split (*no. doc*), mean of document token-length (*mean*), standard deviation of the length (*std*), minimum number of tokens in a document (*min*), and maximum number of tokens in a document (*max*).
We also present histograms in the collapsible, showing the distribution of these token lengths (x-axis; and unit-counts in y-axis), accordingly.
<details>
<summary>Command</summary>
```
python src/evaluate_documents.py dataset=sciarg_base metric=count_text_tokens
```
</details>
| statistics | train |
| :--------- | ------: |
| no. doc | 40 |
| mean | 10521.1 |
| std | 2472.2 |
| min | 6452 |
| max | 16421 |
<details>
<summary>Histogram (split: train, 40 documents)</summary>

</details>
## Dataset Creation
### Curation Rationale
"\[C\]omputational methods for analyzing scientific writing are becoming paramount...there is no publicly available corpus of scientific publications (in English), annotated with fine-grained argumentative structures. ...\[A\]rgumentative structure of scientific publications should not be studied in isolation, but rather in relation to other rhetorical aspects, such as the
discourse structure.
(Lauscher et al. 2018, p. 40)
### Source Data
#### Initial Data Collection and Normalization
"\[W\]e randomly selected a set of 40 documents, available in PDF format, among a bigger collection provided by experts in the domain, who pre-selected a representative sample of articles in Computer Graphics. Articles were classified into four important subjects in this area: Skinning, Motion Capture, Fluid Simulation and Cloth Simulation. We included in the corpus 10 highly representative articles for each subject." (Fisas et al. 2015, p. 44)
"The Corpus includes 10,789 sentences, with an average of 269.7 sentences per document." (p. 45)
#### Who are the source language producers?
It can be implied from the data source that the language producers were academics in computer graphics and related fields, possibly assisted by other human editors.
### Annotations
#### Annotation process
"We trained the four annotators in a calibration phase, consisting of five iterations, in each of which all annotators annotated one publication. After each iteration we computed the inter-annotator agreement (IAA), discussed the disagreements, and, if needed, adjourned the [annotation guidelines](https://data.dws.informatik.uni-mannheim.de/sci-arg/annotation_guidelines.pdf)."
The detailed evolution of IAA over the five calibration iterations is depicted in Lauscher et al. (2018), p. 42, Figure 1.
The annotation were done using BRAT Rapid Annotation Tool ([Stenetorp et al., 2012](https://aclanthology.org/E12-2021/)).
#### Who are the annotators?
"We hired one expert (a researcher in computational linguistics) and three non-expert annotators (humanities and social sciences scholars)." (Lauscher et al. 2018, p. 42)
### Personal and Sensitive Information
\[More Information Needed\]
## Considerations for Using the Data
### Social Impact of Dataset
"To support learning-based models for automated analysis of scientific publications, potentially leading to better understanding
of the different rhetorical aspects of scientific language (which we dub *scitorics*)." (Lauscher et al. 2018, p. 40)
"The resulting corpus... is, to the best of our knowledge, the first argument-annotated corpus of scientific publications in English, enables (1) computational analysis of argumentation in scientific writing and (2) integrated analysis of argumentation and other rhetorical aspects of scientific text." (Lauscher et al. 2018, p. 44)
### Discussion of Biases
"...not all claims are supported and secondly, claims can be supported by other claims. There are many more supports than contradicts relations."
"While the background claims and own claims are on average of similar length (85 and 87 characters, respectively), they are much longer than data components (average of 25 characters)."
"\[A\]nnotators identified an average of 141 connected component per publication...This indicates that either authors write very short argumentative chains or that our annotators had difficulties noticing long-range argumentative dependencies."
(Lauscher et al. 2018, p.43)
### Other Known Limitations
"Expectedly, we observe higher agreements with more calibration. The agreement on argumentative relations is 23% lower than on the components, which we think is due to the high ambiguity of argumentation structures."
"Additionally, disagreements in component identification are propagated to relations as well, since the agreement on a relation implies the agreement on annotated components at both ends of the relation."
(Lauscher et al. 2018, p. 43)
## Additional Information
### Dataset Curators
- **Repository:** [https://github.com/anlausch/ArguminSci](https://github.com/anlausch/ArguminSci)
### Licensing Information
[MIT License](https://github.com/anlausch/ArguminSci/blob/master/LICENSE)
This research was partly funded by the German Research Foundation (DFG), grant number EC 477/5-1 (LOC-DB).
### Citation Information
```
@inproceedings{lauscher2018b,
title = {An argument-annotated corpus of scientific publications},
booktitle = {Proceedings of the 5th Workshop on Mining Argumentation},
publisher = {Association for Computational Linguistics},
author = {Lauscher, Anne and Glava\v{s}, Goran and Ponzetto, Simone Paolo},
address = {Brussels, Belgium},
year = {2018},
pages = {40–46}
}
```
```
@inproceedings{lauscher2018a,
title = {ArguminSci: A Tool for Analyzing Argumentation and Rhetorical Aspects in Scientific Writing},
booktitle = {Proceedings of the 5th Workshop on Mining Argumentation},
publisher = {Association for Computational Linguistics},
author = {Lauscher, Anne and Glava\v{s}, Goran and Eckert, Kai},
address = {Brussels, Belgium},
year = {2018},
pages = {22–28}
}
```
### Contributions
Thanks to [@ArneBinder](https://github.com/ArneBinder) and [@idalr](https://github.com/idalr) for adding this dataset.
|