## Overview The original dataset can be found [here](https://www.dropbox.com/s/hylbuaovqwo2zav/nli_fever.zip?dl=0) while the Github repo is [here](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md). This dataset has been proposed in [Combining fact extraction and verification with neural semantic matching networks](https://dl.acm.org/doi/abs/10.1609/aaai.v33i01.33016859). This dataset has been created as a modification of FEVER. In the original FEVER setting, the input is a claim from Wikipedia and the expected output is a label. However, this is different from the standard NLI formalization which is basically a *pair-of-sequence to label* problem. To facilitate NLI-related research to take advantage of the FEVER dataset, the authors pair the claims in the FEVER dataset with the textual evidence and make it a *pair-of-sequence to label* formatted dataset. ## Dataset curation The label mapping follows the paper and is the following ```python mapping = { "SUPPORTS": 0, # entailment "NOT ENOUGH INFO": 1, # neutral "REFUTES": 2, # contradiction } ``` Also, the "verifiable" column has been encoded as follows ```python mapping = {"NOT VERIFIABLE": 0, "VERIFIABLE": 1} ``` Finally, a consistency check with the labels reported in the original FEVER dataset is performed. NOTE: no label is available for the "test" split. NOTE: there are 3 instances in common between `dev` and `train` splits. ## Code to generate the dataset ```python import pandas as pd from datasets import Dataset, ClassLabel, load_dataset, Value, Features, DatasetDict import json # download data from https://www.dropbox.com/s/hylbuaovqwo2zav/nli_fever.zip?dl=0 paths = { "train": "<some_path>/nli_fever/train_fitems.jsonl", "validation": "<some_path>/nli_fever/dev_fitems.jsonl", "test": "<some_path>/nli_fever/test_fitems.jsonl", } # parsing code from https://github.com/facebookresearch/anli/blob/main/src/utils/common.py registered_jsonabl_classes = {} def register_class(cls): global registered_jsonabl_classes if cls not in registered_jsonabl_classes: registered_jsonabl_classes.update({cls.__name__: cls}) def unserialize_JsonableObject(d): global registered_jsonabl_classes classname = d.pop("_jcls_", None) if classname: cls = registered_jsonabl_classes[classname] obj = cls.__new__(cls) # Make instance without calling __init__ for key, value in d.items(): setattr(obj, key, value) return obj else: return d def load_jsonl(filename, debug_num=None): d_list = [] with open(filename, encoding="utf-8", mode="r") as in_f: print("Load Jsonl:", filename) for line in in_f: item = json.loads(line.strip(), object_hook=unserialize_JsonableObject) d_list.append(item) if debug_num is not None and 0 < debug_num == len(d_list): break return d_list def get_original_fever() -> pd.DataFrame: """Get original fever datasets.""" fever_v1 = load_dataset("fever", "v1.0") fever_v2 = load_dataset("fever", "v2.0") columns = ["id", "label"] splits = ["paper_test", "paper_dev", "labelled_dev", "train"] list_dfs = [fever_v1[split].to_pandas()[columns] for split in splits] list_dfs.append(fever_v2["validation"].to_pandas()[columns]) dfs = pd.concat(list_dfs, ignore_index=False) dfs = dfs.drop_duplicates() dfs = dfs.rename(columns={"label": "fever_gold_label"}) return dfs def load_and_process(path: str, fever_df: pd.DataFrame) -> pd.DataFrame: """Load data split and merge with fever.""" df = pd.DataFrame(load_jsonl(path)) df = df.rename(columns={"query": "premise", "context": "hypothesis"}) # adjust dtype df["cid"] = df["cid"].astype(int) # merge with original fever to get labels df = pd.merge(df, fever_df, left_on="cid", right_on="id", how="inner").drop_duplicates() return df def encode_labels(df: pd.DataFrame) -> pd.DataFrame: """Encode labels using the mapping used in SNLI and MultiNLI""" mapping = { "SUPPORTS": 0, # entailment "NOT ENOUGH INFO": 1, # neutral "REFUTES": 2, # contradiction } df["label"] = df["fever_gold_label"].map(mapping) # verifiable df["verifiable"] = df["verifiable"].map({"NOT VERIFIABLE": 0, "VERIFIABLE": 1}) return df if __name__ == "__main__": fever_df = get_original_fever() dataset_splits = {} for split, path in paths.items(): # from json to dataframe and merge with fever df = load_and_process(path, fever_df) if not len(df) > 0: print(f"Split `{split}` has no matches") continue if split == "train": # train must have same labels assert sum(df["fever_gold_label"] != df["label"]) == 0 # encode labels using the default mapping used by other nli datasets # i.e, entailment: 0, neutral: 1, contradiction: 2 df = df.drop(columns=["label"]) df = encode_labels(df) # cast to dataset features = Features( { "cid": Value(dtype="int64", id=None), "fid": Value(dtype="string", id=None), "id": Value(dtype="int32", id=None), "premise": Value(dtype="string", id=None), "hypothesis": Value(dtype="string", id=None), "verifiable": Value(dtype="int64", id=None), "fever_gold_label": Value(dtype="string", id=None), "label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]), } ) if "test" in path: # no features for test set df["label"] = -1 df["verifiable"] = -1 df["fever_gold_label"] = "not available" dataset = Dataset.from_pandas(df, features=features) dataset_splits[split] = dataset nli_fever = DatasetDict(dataset_splits) nli_fever.push_to_hub("pietrolesci/nli_fever", token="<your token>") # check overlap between splits from itertools import combinations for i, j in combinations(dataset_splits.keys(), 2): print( f"{i} - {j}: ", pd.merge( dataset_splits[i].to_pandas(), dataset_splits[j].to_pandas(), on=["premise", "hypothesis", "label"], how="inner", ).shape[0], ) #> train - dev: 3 #> train - test: 0 #> dev - test: 0 ```