Datasets:

Modalities:
Image
Text
Formats:
webdataset
ArXiv:
Libraries:
Datasets
WebDataset
License:
File size: 2,065 Bytes
42e6928
 
 
 
55c98bc
 
9bbaf40
 
42e6928
7eddfee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7116916
7eddfee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: other
license_name: conceptual-12m
license_link: LICENSE
task_categories:
- image-to-text
size_categories:
- 10M<n<100M
---
# Dataset Card for Conceptual Captions 12M (CC12M)

## Dataset Description

- **Repository:** [Conceptual 12M repository](https://github.com/google-research-datasets/conceptual-12m)
- **Paper:** [Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts](https://arxiv.org/abs/2102.08981)
- **Point of Contact:** [Conceptual Captions e-mail](mailto:[email protected])

### Dataset Summary

Conceptual 12M (CC12M) is a dataset with 12 million image-text pairs specifically meant to be used for visionand-language pre-training.
Its data collection pipeline is a relaxed version of the one used in Conceptual Captions 3M (CC3M).

### Usage

This instance of Conceptual Captions is in [webdataset](https://github.com/webdataset/webdataset/commits/main) .tar format. It can be used with webdataset library or upcoming releases of Hugging Face `datasets`.

...More Detail TBD

### Data Splits

This dataset was downloaded using img2dataset. Images resized on download if shortest edge > 512 to shortest edge = 512.

#### Train
* `cc12m-train-*.tar`
* Downloaded on 2021/18/22
* 2176 shards, 10968539 samples

## Additional Information

### Dataset Curators

Soravit Changpinyo, Piyush Sharma, Nan Ding and Radu Soricut.

### Licensing Information

The dataset may be freely used for any purpose, although acknowledgement of
Google LLC ("Google") as the data source would be appreciated. The dataset is
provided "AS IS" without any warranty, express or implied. Google disclaims all
liability for any damages, direct or indirect, resulting from the use of the
dataset.

### Citation Information

```bibtex
@inproceedings{changpinyo2021cc12m,
  title = {{Conceptual 12M}: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts},
  author = {Changpinyo, Soravit and Sharma, Piyush and Ding, Nan and Soricut, Radu},
  booktitle = {CVPR},
  year = {2021},
}
```