url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
all_goals simp only [predVarOccursIn] simp only [Formula.predVarSet]
case pred_const_ P : PredName n : β„• a✝¹ : PredName a✝ : List VarName ⊒ predVarOccursIn P n (pred_const_ a✝¹ a✝) ↔ (P, n) ∈ (pred_const_ a✝¹ a✝).predVarSet case pred_var_ P : PredName n : β„• a✝¹ : PredName a✝ : List VarName ⊒ predVarOccursIn P n (pred_var_ a✝¹ a✝) ↔ (P, n) ∈ (pred_var_ a✝¹ a✝).predVarSet case eq_ P : PredName n : β„• a✝¹ a✝ : VarName ⊒ predVarOccursIn P n (eq_ a✝¹ a✝) ↔ (P, n) ∈ (eq_ a✝¹ a✝).predVarSet case true_ P : PredName n : β„• ⊒ predVarOccursIn P n true_ ↔ (P, n) ∈ true_.predVarSet case false_ P : PredName n : β„• ⊒ predVarOccursIn P n false_ ↔ (P, n) ∈ false_.predVarSet case not_ P : PredName n : β„• a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝.not_ ↔ (P, n) ∈ a✝.not_.predVarSet case imp_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (a✝¹.imp_ a✝) ↔ (P, n) ∈ (a✝¹.imp_ a✝).predVarSet case and_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (a✝¹.and_ a✝) ↔ (P, n) ∈ (a✝¹.and_ a✝).predVarSet case or_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (a✝¹.or_ a✝) ↔ (P, n) ∈ (a✝¹.or_ a✝).predVarSet case iff_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (a✝¹.iff_ a✝) ↔ (P, n) ∈ (a✝¹.iff_ a✝).predVarSet case forall_ P : PredName n : β„• a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (forall_ a✝¹ a✝) ↔ (P, n) ∈ (forall_ a✝¹ a✝).predVarSet case exists_ P : PredName n : β„• a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (exists_ a✝¹ a✝) ↔ (P, n) ∈ (exists_ a✝¹ a✝).predVarSet case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ predVarOccursIn P n (def_ a✝¹ a✝) ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet
case pred_const_ P : PredName n : β„• a✝¹ : PredName a✝ : List VarName ⊒ False ↔ (P, n) ∈ βˆ… case pred_var_ P : PredName n : β„• a✝¹ : PredName a✝ : List VarName ⊒ P = a✝¹ ∧ n = a✝.length ↔ (P, n) ∈ {(a✝¹, a✝.length)} case eq_ P : PredName n : β„• a✝¹ a✝ : VarName ⊒ False ↔ (P, n) ∈ βˆ… case true_ P : PredName n : β„• ⊒ False ↔ (P, n) ∈ βˆ… case false_ P : PredName n : β„• ⊒ False ↔ (P, n) ∈ βˆ… case not_ P : PredName n : β„• a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet case imp_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝¹ ∨ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝¹.predVarSet βˆͺ a✝.predVarSet case and_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝¹ ∨ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝¹.predVarSet βˆͺ a✝.predVarSet case or_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝¹ ∨ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝¹.predVarSet βˆͺ a✝.predVarSet case iff_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝¹ ∨ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝¹.predVarSet βˆͺ a✝.predVarSet case forall_ P : PredName n : β„• a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet case exists_ P : PredName n : β„• a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ False ↔ (P, n) ∈ βˆ…
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ P : PredName n : β„• a✝¹ : PredName a✝ : List VarName ⊒ predVarOccursIn P n (pred_const_ a✝¹ a✝) ↔ (P, n) ∈ (pred_const_ a✝¹ a✝).predVarSet case pred_var_ P : PredName n : β„• a✝¹ : PredName a✝ : List VarName ⊒ predVarOccursIn P n (pred_var_ a✝¹ a✝) ↔ (P, n) ∈ (pred_var_ a✝¹ a✝).predVarSet case eq_ P : PredName n : β„• a✝¹ a✝ : VarName ⊒ predVarOccursIn P n (eq_ a✝¹ a✝) ↔ (P, n) ∈ (eq_ a✝¹ a✝).predVarSet case true_ P : PredName n : β„• ⊒ predVarOccursIn P n true_ ↔ (P, n) ∈ true_.predVarSet case false_ P : PredName n : β„• ⊒ predVarOccursIn P n false_ ↔ (P, n) ∈ false_.predVarSet case not_ P : PredName n : β„• a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n a✝.not_ ↔ (P, n) ∈ a✝.not_.predVarSet case imp_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (a✝¹.imp_ a✝) ↔ (P, n) ∈ (a✝¹.imp_ a✝).predVarSet case and_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (a✝¹.and_ a✝) ↔ (P, n) ∈ (a✝¹.and_ a✝).predVarSet case or_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (a✝¹.or_ a✝) ↔ (P, n) ∈ (a✝¹.or_ a✝).predVarSet case iff_ P : PredName n : β„• a✝¹ a✝ : Formula a_ih✝¹ : predVarOccursIn P n a✝¹ ↔ (P, n) ∈ a✝¹.predVarSet a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (a✝¹.iff_ a✝) ↔ (P, n) ∈ (a✝¹.iff_ a✝).predVarSet case forall_ P : PredName n : β„• a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (forall_ a✝¹ a✝) ↔ (P, n) ∈ (forall_ a✝¹ a✝).predVarSet case exists_ P : PredName n : β„• a✝¹ : VarName a✝ : Formula a_ih✝ : predVarOccursIn P n a✝ ↔ (P, n) ∈ a✝.predVarSet ⊒ predVarOccursIn P n (exists_ a✝¹ a✝) ↔ (P, n) ∈ (exists_ a✝¹ a✝).predVarSet case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ predVarOccursIn P n (def_ a✝¹ a✝) ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case pred_const_ X xs | pred_var_ X xs | def_ X xs => simp
P : PredName n : β„• X : DefName xs : List VarName ⊒ False ↔ (P, n) ∈ βˆ…
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• X : DefName xs : List VarName ⊒ False ↔ (P, n) ∈ βˆ… TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case eq_ x y => simp
P : PredName n : β„• x y : VarName ⊒ False ↔ (P, n) ∈ βˆ…
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• x y : VarName ⊒ False ↔ (P, n) ∈ βˆ… TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case true_ | false_ => tauto
P : PredName n : β„• ⊒ False ↔ (P, n) ∈ βˆ…
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• ⊒ False ↔ (P, n) ∈ βˆ… TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case not_ phi phi_ih => tauto
P : PredName n : β„• phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊒ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊒ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => simp tauto
P : PredName n : β„• phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊒ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet βˆͺ psi.predVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊒ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet βˆͺ psi.predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
case forall_ x phi phi_ih | exists_ x phi phi_ih => tauto
P : PredName n : β„• x : VarName phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊒ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• x : VarName phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊒ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp only [predVarOccursIn]
case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ predVarOccursIn P n (def_ a✝¹ a✝) ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet
case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ False ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet
Please generate a tactic in lean4 to solve the state. STATE: case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ predVarOccursIn P n (def_ a✝¹ a✝) ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp only [Formula.predVarSet]
case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ False ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet
case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ False ↔ (P, n) ∈ βˆ…
Please generate a tactic in lean4 to solve the state. STATE: case def_ P : PredName n : β„• a✝¹ : DefName a✝ : List VarName ⊒ False ↔ (P, n) ∈ (def_ a✝¹ a✝).predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp
P : PredName n : β„• X : DefName xs : List VarName ⊒ False ↔ (P, n) ∈ βˆ…
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• X : DefName xs : List VarName ⊒ False ↔ (P, n) ∈ βˆ… TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp
P : PredName n : β„• x y : VarName ⊒ False ↔ (P, n) ∈ βˆ…
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• x y : VarName ⊒ False ↔ (P, n) ∈ βˆ… TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
tauto
P : PredName n : β„• ⊒ False ↔ (P, n) ∈ βˆ…
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• ⊒ False ↔ (P, n) ∈ βˆ… TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
tauto
P : PredName n : β„• phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊒ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊒ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
simp
P : PredName n : β„• phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊒ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet βˆͺ psi.predVarSet
P : PredName n : β„• phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊒ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet ∨ (P, n) ∈ psi.predVarSet
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊒ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet βˆͺ psi.predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
tauto
P : PredName n : β„• phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊒ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet ∨ (P, n) ∈ psi.predVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• phi psi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet psi_ih : predVarOccursIn P n psi ↔ (P, n) ∈ psi.predVarSet ⊒ predVarOccursIn P n phi ∨ predVarOccursIn P n psi ↔ (P, n) ∈ phi.predVarSet ∨ (P, n) ∈ psi.predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.predVarOccursIn_iff_mem_predVarSet
[438, 1]
[464, 10]
tauto
P : PredName n : β„• x : VarName phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊒ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet
no goals
Please generate a tactic in lean4 to solve the state. STATE: P : PredName n : β„• x : VarName phi : Formula phi_ih : predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet ⊒ predVarOccursIn P n phi ↔ (P, n) ∈ phi.predVarSet TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
induction F
v : VarName F : Formula h1 : isBoundIn v F ⊒ occursIn v F
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_const_ a✝¹ a✝) ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_var_ a✝¹ a✝) ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isBoundIn v (eq_ a✝¹ a✝) ⊒ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isBoundIn v true_ ⊒ occursIn v true_ case false_ v : VarName h1 : isBoundIn v false_ ⊒ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝.not_ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.imp_ a✝) ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.and_ a✝) ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.or_ a✝) ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.iff_ a✝) ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (forall_ a✝¹ a✝) ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (exists_ a✝¹ a✝) ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isBoundIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: v : VarName F : Formula h1 : isBoundIn v F ⊒ occursIn v F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
all_goals simp only [isBoundIn] at h1
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_const_ a✝¹ a✝) ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_var_ a✝¹ a✝) ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isBoundIn v (eq_ a✝¹ a✝) ⊒ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isBoundIn v true_ ⊒ occursIn v true_ case false_ v : VarName h1 : isBoundIn v false_ ⊒ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝.not_ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.imp_ a✝) ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.and_ a✝) ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.or_ a✝) ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.iff_ a✝) ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (forall_ a✝¹ a✝) ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (exists_ a✝¹ a✝) ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isBoundIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝)
case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (exists_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_const_ a✝¹ a✝) ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isBoundIn v (pred_var_ a✝¹ a✝) ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isBoundIn v (eq_ a✝¹ a✝) ⊒ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isBoundIn v true_ ⊒ occursIn v true_ case false_ v : VarName h1 : isBoundIn v false_ ⊒ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝.not_ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.imp_ a✝) ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.and_ a✝) ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.or_ a✝) ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (a✝¹.iff_ a✝) ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (forall_ a✝¹ a✝) ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v (exists_ a✝¹ a✝) ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isBoundIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
all_goals simp only [occursIn] tauto
case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (exists_ a✝¹ a✝)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case not_ v : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isBoundIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : isBoundIn v a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (exists_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
simp only [isBoundIn] at h1
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isBoundIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isBoundIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
simp only [occursIn]
case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (exists_ a✝¹ a✝)
case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ v = a✝¹ ∨ occursIn v a✝
Please generate a tactic in lean4 to solve the state. STATE: case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ occursIn v (exists_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isBoundIn_imp_occursIn
[467, 1]
[478, 10]
tauto
case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ v = a✝¹ ∨ occursIn v a✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isBoundIn v a✝ β†’ occursIn v a✝ h1 : v = a✝¹ ∨ isBoundIn v a✝ ⊒ v = a✝¹ ∨ occursIn v a✝ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
induction F
v : VarName F : Formula h1 : isFreeIn v F ⊒ occursIn v F
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_const_ a✝¹ a✝) ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_var_ a✝¹ a✝) ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isFreeIn v (eq_ a✝¹ a✝) ⊒ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isFreeIn v true_ ⊒ occursIn v true_ case false_ v : VarName h1 : isFreeIn v false_ ⊒ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝.not_ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.imp_ a✝) ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.and_ a✝) ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.or_ a✝) ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.iff_ a✝) ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (forall_ a✝¹ a✝) ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (exists_ a✝¹ a✝) ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isFreeIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: v : VarName F : Formula h1 : isFreeIn v F ⊒ occursIn v F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
all_goals simp only [isFreeIn] at h1
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_const_ a✝¹ a✝) ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_var_ a✝¹ a✝) ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isFreeIn v (eq_ a✝¹ a✝) ⊒ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isFreeIn v true_ ⊒ occursIn v true_ case false_ v : VarName h1 : isFreeIn v false_ ⊒ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝.not_ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.imp_ a✝) ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.and_ a✝) ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.or_ a✝) ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.iff_ a✝) ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (forall_ a✝¹ a✝) ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (exists_ a✝¹ a✝) ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isFreeIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝)
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : v = a✝¹ ∨ v = a✝ ⊒ occursIn v (eq_ a✝¹ a✝) case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : Β¬v = a✝¹ ∧ isFreeIn v a✝ ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : Β¬v = a✝¹ ∧ isFreeIn v a✝ ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_const_ a✝¹ a✝) ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : isFreeIn v (pred_var_ a✝¹ a✝) ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : isFreeIn v (eq_ a✝¹ a✝) ⊒ occursIn v (eq_ a✝¹ a✝) case true_ v : VarName h1 : isFreeIn v true_ ⊒ occursIn v true_ case false_ v : VarName h1 : isFreeIn v false_ ⊒ occursIn v false_ case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝.not_ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.imp_ a✝) ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.and_ a✝) ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.or_ a✝) ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (a✝¹.iff_ a✝) ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (forall_ a✝¹ a✝) ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v (exists_ a✝¹ a✝) ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isFreeIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
all_goals simp only [occursIn] tauto
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : v = a✝¹ ∨ v = a✝ ⊒ occursIn v (eq_ a✝¹ a✝) case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : Β¬v = a✝¹ ∧ isFreeIn v a✝ ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : Β¬v = a✝¹ ∧ isFreeIn v a✝ ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (def_ a✝¹ a✝)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName h1 : v = a✝¹ ∨ v = a✝ ⊒ occursIn v (eq_ a✝¹ a✝) case not_ v : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝ ⊒ occursIn v a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : isFreeIn v a✝¹ β†’ occursIn v a✝¹ a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ occursIn v (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : Β¬v = a✝¹ ∧ isFreeIn v a✝ ⊒ occursIn v (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : isFreeIn v a✝ β†’ occursIn v a✝ h1 : Β¬v = a✝¹ ∧ isFreeIn v a✝ ⊒ occursIn v (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
simp only [isFreeIn] at h1
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isFreeIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝)
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : isFreeIn v (def_ a✝¹ a✝) ⊒ occursIn v (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
simp only [occursIn]
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (def_ a✝¹ a✝)
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ v ∈ a✝
Please generate a tactic in lean4 to solve the state. STATE: case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ occursIn v (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Binders.lean
FOL.NV.isFreeIn_imp_occursIn
[481, 1]
[492, 10]
tauto
case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ v ∈ a✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case def_ v : VarName a✝¹ : DefName a✝ : List VarName h1 : v ∈ a✝ ⊒ v ∈ a✝ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
induction F generalizing binders V
D : Type I : Interpretation D V V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula binders : Finset VarName F : Formula h1 : admitsAux Ο„ binders F h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E F ↔ Holds D I V E (replace Ο„ F)
case pred_const_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ a✝¹ a✝) ↔ Holds D I V E (replace Ο„ (pred_const_ a✝¹ a✝)) case pred_var_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_var_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ a✝¹ a✝) ↔ Holds D I V E (replace Ο„ (pred_var_ a✝¹ a✝)) case eq_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ a✝ : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (eq_ a✝¹ a✝) ↔ Holds D I V E (replace Ο„ (eq_ a✝¹ a✝)) case true_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders true_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E true_ ↔ Holds D I V E (replace Ο„ true_) case false_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace Ο„ false_) case not_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders a✝.not_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝.not_ ↔ Holds D I V E (replace Ο„ a✝.not_) case imp_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝¹ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace Ο„ a✝¹)) a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (a✝¹.imp_ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (a✝¹.imp_ a✝) ↔ Holds D I V E (replace Ο„ (a✝¹.imp_ a✝)) case and_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝¹ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace Ο„ a✝¹)) a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (a✝¹.and_ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (a✝¹.and_ a✝) ↔ Holds D I V E (replace Ο„ (a✝¹.and_ a✝)) case or_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝¹ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace Ο„ a✝¹)) a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (a✝¹.or_ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (a✝¹.or_ a✝) ↔ Holds D I V E (replace Ο„ (a✝¹.or_ a✝)) case iff_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝¹ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝¹ ↔ Holds D I V E (replace Ο„ a✝¹)) a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (a✝¹.iff_ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (a✝¹.iff_ a✝) ↔ Holds D I V E (replace Ο„ (a✝¹.iff_ a✝)) case forall_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (forall_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (forall_ a✝¹ a✝) ↔ Holds D I V E (replace Ο„ (forall_ a✝¹ a✝)) case exists_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders a✝ β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E a✝ ↔ Holds D I V E (replace Ο„ a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ a✝¹ a✝) ↔ Holds D I V E (replace Ο„ (exists_ a✝¹ a✝)) case def_ D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ a✝¹ a✝) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (def_ a✝¹ a✝) ↔ Holds D I V E (replace Ο„ (def_ a✝¹ a✝))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula binders : Finset VarName F : Formula h1 : admitsAux Ο„ binders F h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E F ↔ Holds D I V E (replace Ο„ F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case pred_const_ X xs => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (replace Ο„ (pred_const_ X xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (replace Ο„ (pred_const_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case eq_ x y => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace Ο„ (eq_ x y))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace Ο„ (eq_ x y)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case true_ | false_ => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace Ο„ false_)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace Ο„ false_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case not_ phi phi_ih => simp only [admitsAux] at h1 simp only [replace] simp only [Holds] congr! 1 exact phi_ih V binders h1 h2
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi.not_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi.not_)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi.not_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi.not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [admitsAux] at h1 simp only [replace] simp only [Holds] first | apply forall_congr' | apply exists_congr intro d apply phi_ih (Function.updateITE V x d) (binders βˆͺ {x}) h1 intro v a1 simp only [Function.updateITE] simp at a1 push_neg at a1 cases a1 case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace Ο„ (exists_ x phi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace Ο„ (exists_ x phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (replace Ο„ (pred_const_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (pred_const_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (replace Ο„ (pred_const_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (pred_const_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_const_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_const_ X xs) ↔ Holds D I V E (pred_const_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_var_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 ∧ (βˆ€ x ∈ binders, Β¬(isFreeIn x (Ο„ X xs.length).2 ∧ x βˆ‰ (Ο„ X xs.length).1)) ∧ xs.length = (Ο„ X xs.length).1.length h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (pred_var_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 ∧ (βˆ€ x ∈ binders, Β¬(isFreeIn x (Ο„ X xs.length).2 ∧ x βˆ‰ (Ο„ X xs.length).1)) ∧ xs.length = (Ο„ X xs.length).1.length h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1 : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 ∧ (βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1) ∧ xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 ∧ (βˆ€ x ∈ binders, Β¬(isFreeIn x (Ο„ X xs.length).2 ∧ x βˆ‰ (Ο„ X xs.length).1)) ∧ xs.length = (Ο„ X xs.length).1.length h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases h1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1 : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 ∧ (βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1) ∧ xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
case intro D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x left✝ : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 right✝ : (βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1) ∧ xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1 : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 ∧ (βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1) ∧ xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases h1_right
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right : (βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1) ∧ xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
case intro D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 left✝ : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 right✝ : xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right : (βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1) ∧ xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
obtain s1 := Sub.Var.All.Rec.substitution_theorem D I V E (Function.updateListITE id (Ο„ X xs.length).fst xs) (Ο„ X xs.length).snd h1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (V ∘ Function.updateListITE id (Ο„ X xs.length).1 xs) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Function.updateListITE_comp] at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (V ∘ Function.updateListITE id (Ο„ X xs.length).1 xs) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE (V ∘ id) (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (V ∘ Function.updateListITE id (Ο„ X xs.length).1 xs) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE (V ∘ id) (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE (V ∘ id) (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [s2] at s1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) s2 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s2 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) s2 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
clear s2
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s2 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s2 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if (List.map V xs).length = (Ο„ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (Ο„ X (List.map V xs).length).1 (List.map V xs)) E (Ο„ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (pred_var_ X xs) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if (List.map V xs).length = (Ο„ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (Ο„ X (List.map V xs).length).1 (List.map V xs)) E (Ο„ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if (List.map V xs).length = (Ο„ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (Ο„ X (List.map V xs).length).1 (List.map V xs)) E (Ο„ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (Ο„ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 else pred_var_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if (List.map V xs).length = (Ο„ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (Ο„ X (List.map V xs).length).1 (List.map V xs)) E (Ο„ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (replace Ο„ (pred_var_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if (List.map V xs).length = (Ο„ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (Ο„ X (List.map V xs).length).1 (List.map V xs)) E (Ο„ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (Ο„ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if xs.length = (Ο„ X xs.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (Ο„ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 else pred_var_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if (List.map V xs).length = (Ο„ X (List.map V xs).length).1.length then Holds D I (Function.updateListITE V' (Ο„ X (List.map V xs).length).1 (List.map V xs)) E (Ο„ X (List.map V xs).length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (Ο„ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 else pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [if_pos h1_right_right]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if xs.length = (Ο„ X xs.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (Ο„ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ (if xs.length = (Ο„ X xs.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E (if xs.length = (Ο„ X xs.length).1.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 else pred_var_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact s1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply Holds_coincide_Var
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ βˆ€ (v : VarName), isFreeIn v (Ο„ X xs.length).2 β†’ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I (Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
intro v a1
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ βˆ€ (v : VarName), isFreeIn v (Ο„ X xs.length).2 β†’ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) ⊒ βˆ€ (v : VarName), isFreeIn v (Ο„ X xs.length).2 β†’ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
by_cases c1 : v ∈ (Ο„ X xs.length).fst
case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: case h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply Function.updateListITE_mem_eq_len V V' v (Ο„ X xs.length).fst (List.map V xs) c1
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ (Ο„ X xs.length).1.length = (List.map V xs).length
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ (Ο„ X xs.length).1.length = (List.map V xs).length
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ (Ο„ X xs.length).1.length = xs.length
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ (Ο„ X xs.length).1.length = (List.map V xs).length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
symm
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ (Ο„ X xs.length).1.length = xs.length
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ xs.length = (Ο„ X xs.length).1.length
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ (Ο„ X xs.length).1.length = xs.length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact h1_right_right
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ xs.length = (Ο„ X xs.length).1.length
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v ∈ (Ο„ X xs.length).1 ⊒ xs.length = (Ο„ X xs.length).1.length TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
by_cases c2 : v ∈ binders
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v ∈ binders ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
specialize h1_right_left v c2 a1
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v ∈ binders ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v ∈ binders h1_right_left : v ∈ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v ∈ binders ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
contradiction
case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v ∈ binders h1_right_left : v ∈ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v ∈ binders h1_right_left : v ∈ (Ο„ X xs.length).1 ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
specialize h2 v c2
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders h2 : V v = V' v ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply Function.updateListITE_mem'
case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders h2 : V v = V' v ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v
case neg.h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders h2 : V v = V' v ⊒ V v = V' v
Please generate a tactic in lean4 to solve the state. STATE: case neg D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders h2 : V v = V' v ⊒ Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs) v = Function.updateListITE V' (Ο„ X xs.length).1 (List.map V xs) v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact h2
case neg.h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders h2 : V v = V' v ⊒ V v = V' v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.h1 D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1_left : Var.All.Rec.admits (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2 h1_right_left : βˆ€ x ∈ binders, isFreeIn x (Ο„ X xs.length).2 β†’ x ∈ (Ο„ X xs.length).1 h1_right_right : xs.length = (Ο„ X xs.length).1.length s1 : Holds D I (Function.updateListITE V (Ο„ X xs.length).1 (List.map V xs)) E (Ο„ X xs.length).2 ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id (Ο„ X xs.length).1 xs) (Ο„ X xs.length).2) v : VarName a1 : isFreeIn v (Ο„ X xs.length).2 c1 : v βˆ‰ (Ο„ X xs.length).1 c2 : v βˆ‰ binders h2 : V v = V' v ⊒ V v = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace Ο„ (eq_ x y))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (replace Ο„ (eq_ x y)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (eq_ x y) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (eq_ x y) ↔ Holds D I V E (eq_ x y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace Ο„ false_)
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E (replace Ο„ false_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders false_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E false_ ↔ Holds D I V E false_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi.not_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi.not_)
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi.not_)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi.not_ h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi.not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi.not_)
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi).not_
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi.not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi).not_
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Β¬Holds D I V E (replace Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi.not_ ↔ Holds D I V E (replace Ο„ phi).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Β¬Holds D I V E (replace Ο„ phi)
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Β¬Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Β¬Holds D I V E (replace Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact phi_ih V binders h1 h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (phi.iff_ psi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace Ο„ (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace Ο„ (phi.iff_ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (phi.iff_ psi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace Ο„ (phi.iff_ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace Ο„ (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace Ο„ phi).iff_ (replace Ο„ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E (replace Ο„ (phi.iff_ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace Ο„ phi).iff_ (replace Ο„ psi))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace Ο„ phi) ↔ Holds D I V E (replace Ο„ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (phi.iff_ psi) ↔ Holds D I V E ((replace Ο„ phi).iff_ (replace Ο„ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases h1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace Ο„ phi) ↔ Holds D I V E (replace Ο„ psi))
case intro D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x left✝ : admitsAux Ο„ binders phi right✝ : admitsAux Ο„ binders psi ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace Ο„ phi) ↔ Holds D I V E (replace Ο„ psi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders phi ∧ admitsAux Ο„ binders psi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace Ο„ phi) ↔ Holds D I V E (replace Ο„ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace Ο„ phi) ↔ Holds D I V E (replace Ο„ psi))
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi) case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi) ↔ (Holds D I V E (replace Ο„ phi) ↔ Holds D I V E (replace Ο„ psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact phi_ih V binders h1_left h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact psi_ih V binders h1_right h2
case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula phi psi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) psi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders psi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi)) V : VarAssignment D binders : Finset VarName h2 : βˆ€ x βˆ‰ binders, V x = V' x h1_left : admitsAux Ο„ binders phi h1_right : admitsAux Ο„ binders psi ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E psi ↔ Holds D I V E (replace Ο„ psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace Ο„ (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace Ο„ (exists_ x phi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (exists_ x phi) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace Ο„ (exists_ x phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace Ο„ (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace Ο„ phi))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (replace Ο„ (exists_ x phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace Ο„ phi))
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (exists_ x phi) ↔ Holds D I V E (exists_ x (replace Ο„ phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
intro d
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply phi_ih (Function.updateITE V x d) (binders βˆͺ {x}) h1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, Function.updateITE V x d x_1 = V' x_1
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V x d) E (replace Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
intro v a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, Function.updateITE V x d x_1 = V' x_1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D ⊒ βˆ€ x_1 βˆ‰ binders βˆͺ {x}, Function.updateITE V x d x_1 = V' x_1 TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Function.updateITE]
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = V' v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ (if v = x then d else V v) = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ Function.updateITE V x d v = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp at a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ (if v = x then d else V v) = V' v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ (if v = x then d else V v) = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders βˆͺ {x} ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
push_neg at a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ (if v = x then d else V v) = V' v
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ (if v = x then d else V v) = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ Β¬v = x ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases a1
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ (if v = x then d else V v) = V' v
case h.intro D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName left✝ : v βˆ‰ binders right✝ : v β‰  x ⊒ (if v = x then d else V v) = V' v
Please generate a tactic in lean4 to solve the state. STATE: case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1 : v βˆ‰ binders ∧ v β‰  x ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ (if v = x then d else V v) = V' v
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply forall_congr'
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆ€ (d : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V x d) E (replace Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆ€ (d : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V x d) E (replace Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace Ο„ phi)
case h D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ βˆ€ (a : D), Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V x a) E (replace Ο„ phi)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ (βˆƒ d, Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V x d) E (replace Ο„ phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [if_neg a1_right]
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ (if v = x then d else V v) = V' v
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V v = V' v
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ (if v = x then d else V v) = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V v = V' v
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula x : VarName phi : Formula phi_ih : βˆ€ (V : VarAssignment D) (binders : Finset VarName), admitsAux Ο„ binders phi β†’ (βˆ€ x βˆ‰ binders, V x = V' x) β†’ (Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E phi ↔ Holds D I V E (replace Ο„ phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ (binders βˆͺ {x}) phi h2 : βˆ€ x βˆ‰ binders, V x = V' x d : D v : VarName a1_left : v βˆ‰ binders a1_right : v β‰  x ⊒ V v = V' v TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
cases E
D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (def_ X xs) ↔ Holds D I V E (replace Ο„ (def_ X xs))
case nil D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) [] (Ο„ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace Ο„ (def_ X xs)) case cons D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x head✝ : Definition tail✝ : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) (head✝ :: tail✝) (Ο„ X ds.length).2 else I.pred_var_ X ds } V (head✝ :: tail✝) (def_ X xs) ↔ Holds D I V (head✝ :: tail✝) (replace Ο„ (def_ X xs))
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D E : Env Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) E (Ο„ X ds.length).2 else I.pred_var_ X ds } V E (def_ X xs) ↔ Holds D I V E (replace Ο„ (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
case nil => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) [] (Ο„ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace Ο„ (def_ X xs))
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) [] (Ο„ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace Ο„ (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) [] (Ο„ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace Ο„ (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) [] (Ο„ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) [] (Ο„ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (replace Ο„ (def_ X xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) [] (Ο„ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) [] (Ο„ X ds.length).2 else I.pred_var_ X ds } V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/All/Rec/Sub.lean
FOL.NV.Sub.Pred.All.Rec.substitution_theorem_aux
[109, 1]
[238, 15]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) (hd :: tl) (Ο„ X ds.length).2 else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (replace Ο„ (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) (hd :: tl) (Ο„ X ds.length).2 else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
Please generate a tactic in lean4 to solve the state. STATE: D : Type I : Interpretation D V' : VarAssignment D Ο„ : PredName β†’ β„• β†’ List VarName Γ— Formula X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux Ο„ binders (def_ X xs) h2 : βˆ€ x βˆ‰ binders, V x = V' x hd : Definition tl : List Definition ⊒ Holds D { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun X ds => if ds.length = (Ο„ X ds.length).1.length then Holds D I (Function.updateListITE V' (Ο„ X ds.length).1 ds) (hd :: tl) (Ο„ X ds.length).2 else I.pred_var_ X ds } V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (replace Ο„ (def_ X xs)) TACTIC: