"""Convert entity annotation from spaCy v2 TRAIN_DATA format to spaCy v3 .spacy format.""" import srsly import typer import warnings from pathlib import Path import spacy from spacy.tokens import DocBin def convert(lang: str, input_paths: list[Path], output_dir: Path, spans_key: str = "sc"): nlp = spacy.blank(lang) nlp.add_pipe("sentencizer") # Ensure output directory exists output_dir.mkdir(parents=True, exist_ok=True) # Process each input file for input_path in input_paths: print(input_path) doc_bin = DocBin() for annotation in srsly.read_jsonl(input_path): text = annotation["text"] doc = nlp.make_doc(text) spans = [] for item in annotation["spans"]: start = item["start"] end = item["end"] label = item["label"] span = doc.char_span(start, end, label=label) if span is None: msg = f"Skipping entity [{start}, {end}, {label}] in the following text because the character span '{doc.text[start:end]}' does not align with token boundaries." warnings.warn(msg) else: spans.append(span) doc.spans[spans_key] = spans doc_bin.add(doc) # Write to output file in the specified directory output_file = output_dir / f"{input_path.stem}.spacy" doc_bin.to_disk(output_file) if __name__ == "__main__": typer.run(convert)