LTMeyer commited on
Commit
6906b56
·
verified ·
1 Parent(s): 384348a

Add files using upload-large-folder tool

Browse files
Files changed (29) hide show
  1. .gitattributes +20 -0
  2. README.md +114 -0
  3. acoustic_scattering_discontinuous.yaml +28 -0
  4. data/test/acoustic_scattering_discontinuous_chunk_18.hdf5 +3 -0
  5. data/test/acoustic_scattering_discontinuous_chunk_19.hdf5 +3 -0
  6. data/train/acoustic_scattering_discontinuous_chunk_0.hdf5 +3 -0
  7. data/train/acoustic_scattering_discontinuous_chunk_1.hdf5 +3 -0
  8. data/train/acoustic_scattering_discontinuous_chunk_10.hdf5 +3 -0
  9. data/train/acoustic_scattering_discontinuous_chunk_11.hdf5 +3 -0
  10. data/train/acoustic_scattering_discontinuous_chunk_12.hdf5 +3 -0
  11. data/train/acoustic_scattering_discontinuous_chunk_13.hdf5 +3 -0
  12. data/train/acoustic_scattering_discontinuous_chunk_14.hdf5 +3 -0
  13. data/train/acoustic_scattering_discontinuous_chunk_15.hdf5 +3 -0
  14. data/train/acoustic_scattering_discontinuous_chunk_2.hdf5 +3 -0
  15. data/train/acoustic_scattering_discontinuous_chunk_3.hdf5 +3 -0
  16. data/train/acoustic_scattering_discontinuous_chunk_4.hdf5 +3 -0
  17. data/train/acoustic_scattering_discontinuous_chunk_5.hdf5 +3 -0
  18. data/train/acoustic_scattering_discontinuous_chunk_6.hdf5 +3 -0
  19. data/train/acoustic_scattering_discontinuous_chunk_7.hdf5 +3 -0
  20. data/train/acoustic_scattering_discontinuous_chunk_8.hdf5 +3 -0
  21. data/train/acoustic_scattering_discontinuous_chunk_9.hdf5 +3 -0
  22. data/valid/acoustic_scattering_discontinuous_chunk_16.hdf5 +3 -0
  23. data/valid/acoustic_scattering_discontinuous_chunk_17.hdf5 +3 -0
  24. generation/acoustics_2d_interface_random_medium.py +297 -0
  25. generation/generate_acoustics_data.py +166 -0
  26. generation/run_discontinuous.sh +12 -0
  27. gif/discontinuous_density.png +3 -0
  28. stats.yaml +14 -0
  29. visualization_acoustic_scattering_discontinuous.ipynb +0 -0
.gitattributes CHANGED
@@ -56,3 +56,23 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
59
+ data/train/acoustic_scattering_discontinuous_chunk_2.hdf5 filter=lfs diff=lfs merge=lfs -text
60
+ data/test/acoustic_scattering_discontinuous_chunk_18.hdf5 filter=lfs diff=lfs merge=lfs -text
61
+ data/train/acoustic_scattering_discontinuous_chunk_8.hdf5 filter=lfs diff=lfs merge=lfs -text
62
+ data/train/acoustic_scattering_discontinuous_chunk_6.hdf5 filter=lfs diff=lfs merge=lfs -text
63
+ data/train/acoustic_scattering_discontinuous_chunk_0.hdf5 filter=lfs diff=lfs merge=lfs -text
64
+ data/train/acoustic_scattering_discontinuous_chunk_4.hdf5 filter=lfs diff=lfs merge=lfs -text
65
+ data/train/acoustic_scattering_discontinuous_chunk_15.hdf5 filter=lfs diff=lfs merge=lfs -text
66
+ data/train/acoustic_scattering_discontinuous_chunk_13.hdf5 filter=lfs diff=lfs merge=lfs -text
67
+ data/train/acoustic_scattering_discontinuous_chunk_7.hdf5 filter=lfs diff=lfs merge=lfs -text
68
+ data/valid/acoustic_scattering_discontinuous_chunk_17.hdf5 filter=lfs diff=lfs merge=lfs -text
69
+ data/train/acoustic_scattering_discontinuous_chunk_11.hdf5 filter=lfs diff=lfs merge=lfs -text
70
+ data/train/acoustic_scattering_discontinuous_chunk_10.hdf5 filter=lfs diff=lfs merge=lfs -text
71
+ data/train/acoustic_scattering_discontinuous_chunk_5.hdf5 filter=lfs diff=lfs merge=lfs -text
72
+ data/train/acoustic_scattering_discontinuous_chunk_12.hdf5 filter=lfs diff=lfs merge=lfs -text
73
+ data/valid/acoustic_scattering_discontinuous_chunk_16.hdf5 filter=lfs diff=lfs merge=lfs -text
74
+ data/train/acoustic_scattering_discontinuous_chunk_1.hdf5 filter=lfs diff=lfs merge=lfs -text
75
+ data/train/acoustic_scattering_discontinuous_chunk_14.hdf5 filter=lfs diff=lfs merge=lfs -text
76
+ data/test/acoustic_scattering_discontinuous_chunk_19.hdf5 filter=lfs diff=lfs merge=lfs -text
77
+ data/train/acoustic_scattering_discontinuous_chunk_9.hdf5 filter=lfs diff=lfs merge=lfs -text
78
+ data/train/acoustic_scattering_discontinuous_chunk_3.hdf5 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-4.0
5
+ tags:
6
+ - physics
7
+
8
+ task_categories:
9
+ - time-series-forecasting
10
+ - other
11
+ task_ids:
12
+ - multivariate-time-series-forecasting
13
+ ---
14
+
15
+ # How To Load from HuggingFace Hub
16
+
17
+ 1. Be sure to have `the_well` installed (`pip install the_well`)
18
+ 2. Use the `WellDataModule` to retrieve data as follows:
19
+
20
+ ```python
21
+ from the_well.benchmark.data import WellDataModule
22
+
23
+ # The following line may take a couple of minutes to instantiate the datamodule
24
+ datamodule = WellDataModule(
25
+ "hf://datasets/polymathic-ai/",
26
+ "acoustic_scattering_discontinuous",
27
+ )
28
+ train_dataloader = datamodule.train_dataloader()
29
+
30
+ for batch in dataloader:
31
+ # Process training batch
32
+ ...
33
+ ```
34
+
35
+ # Acoustic Scattering - Single Discontinuity
36
+
37
+ **One line description of the data:** Simple acoustic wave propogation over a domain split into two continuously varying sub-domains with a single discountinuous interface.
38
+
39
+ **Longer description of the data:** These variable-coefficient acoustic equations describe the propogation of an acoustic pressure wave through domains consisting of multiple materials with different scattering properties. This problem emerges in source optimization and it's inverse - that of identifying the material properties from the scattering of the wave - is a vital problem in geology and radar design. This is the simplest of three scenarios. In this case, we have a variable number of initial point sources and single discontinuity separating two sub-domains. Within each subdomain, the density of the underlying material varies smoothly.
40
+
41
+ **Domain expert**: [Michael McCabe](https://mikemccabe210.github.io/), Polymathic AI.
42
+
43
+ **Code or software used to generate the data**: Clawpack, adapted from [this example.](http://www.clawpack.org/gallery/pyclaw/gallery/acoustics_2d_interface.html)
44
+
45
+ **Equation**:
46
+
47
+ ```math
48
+ \begin{align}
49
+ \frac{ \partial p}{\partial t} + K(x, y) \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= 0 \\
50
+ \frac{ \partial u }{\partial t} + \frac{1}{\rho(x, y)} \frac{\partial p}{\partial x} &= 0 \\
51
+ \frac{ \partial v }{\partial t} + \frac{1}{\rho(x, y)} \frac{\partial p}{\partial v} &= 0
52
+ \end{align}
53
+ ```
54
+
55
+ with \\(\rho\\) the material density, \\(u, v\\) the velocity in the \\(x, y\\) directions respectively, \\(p\\) the pressure, and \\(K\\) the bulk modulus.
56
+
57
+ Example material densities can be seen below:
58
+
59
+ ![image](https://users.flatironinstitute.org/~polymathic/data/the_well/datasets/acoustic_scattering_discontinuous/gif/discontinuous_density.png)
60
+
61
+ # About the data
62
+
63
+ **Dimension of discretized data:** 101 steps of 256 \\(\times\\) 256 images.
64
+
65
+ **Fields available in the data:** pressure (scalar field), material density (constant scalar field), material speed of sound (constant scalar field), velocity field (vector field).
66
+
67
+ **Number of trajectories:** 2000.
68
+
69
+ **Estimated size of the ensemble of all simulations:** 157.7 GB.
70
+
71
+ **Grid type:** uniform, cartesian coordinates.
72
+
73
+ **Initial conditions:** Flat pressure static field with 1-4 high pressure rings randomly placed in domain. The rings are defined with variable intensity \\(\sim \mathcal U(.5, 2)\\) and radius \\(\sim \mathcal U(.06, .15)\\).
74
+
75
+ **Boundary conditions:** Open domain in \\(y\\), reflective walls in \\(x\\).
76
+
77
+ **Simulation time-step:** Variable based on CFL with safety factor .25.
78
+
79
+ **Data are stored separated by (\\(\Delta t\\)):** 2/101.
80
+
81
+ **Total time range (\\(t_{min}\\) to \\(t_{max}\\)):** [0, 2]
82
+
83
+ **Spatial domain size (\\(L_x\\), \\(L_y\\)):** [-1, 1] x [-1, 1]
84
+
85
+ **Set of coefficients or non-dimensional parameters evaluated:**
86
+
87
+ - \\(K\\) is fixed at 4.0.
88
+
89
+ - \\(\rho\\) is the primary coefficient here. Each side is generated with one of the following distributions:
90
+ - Gaussian Bump - Peak density samples from \\(\sim\mathcal U(1, 7)\\) and \\(\sigma \sim\mathcal U(.1, 5)\\) with the center of the bump uniformly sampled from the extent of the subdomain.
91
+ - Linear gradient - Four corners sampled with \\(\rho \sim \mathcal U(1, 7)\\). Inner density is bilinearly interpolated.
92
+ - Constant - Constant \\(\rho \sim\mathcal U(1, 7)\\).
93
+ - Smoothed Gaussian Noise - Constant background sampled \\(\rho \sim\mathcal U(1, 7)\\) with IID standard normal noise applied. This is then smoothed by a Gaussian filter of varying sigma \\(\sigma \sim\mathcal U(5, 10)\\).
94
+
95
+ **Approximate time to generate the data:** ~15 minutes per simulation.
96
+
97
+ **Hardware used to generate the data and precision used for generating the data:** 64 Intel Icelake cores per simulation. Generated in double precision.
98
+
99
+ # What is interesting and challenging about the data:
100
+ Wave propogation through discontinuous media. Most existing machine learning datasets for computational physics are highly smooth and the acoustic challenges presented here offer challenging discontinuous scenarios that approximate complicated geometry through the variable density.
101
+
102
+ Please cite the associated paper if you use this data in your research:
103
+
104
+ ```
105
+ @article{mandli2016clawpack,
106
+ title={Clawpack: building an open source ecosystem for solving hyperbolic PDEs},
107
+ author={Mandli, Kyle T and Ahmadia, Aron J and Berger, Marsha and Calhoun, Donna and George, David L and Hadjimichael, Yiannis and Ketcheson, David I and Lemoine, Grady I and LeVeque, Randall J},
108
+ journal={PeerJ Computer Science},
109
+ volume={2},
110
+ pages={e68},
111
+ year={2016},
112
+ publisher={PeerJ Inc.}
113
+ }
114
+ ```
acoustic_scattering_discontinuous.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset_name: acoustic_scattering_discontinuous
2
+ n_spatial_dims: 2
3
+ spatial_resolution:
4
+ - 256
5
+ - 256
6
+ scalar_names: []
7
+ constant_scalar_names: []
8
+ field_names:
9
+ 0:
10
+ - pressure
11
+ 1:
12
+ - velocity_x
13
+ - velocity_y
14
+ 2: []
15
+ constant_field_names:
16
+ 0:
17
+ - density
18
+ - speed_of_sound
19
+ 1: []
20
+ 2: []
21
+ boundary_condition_types:
22
+ - OPEN
23
+ - WALL
24
+ n_simulations: 2
25
+ n_steps_per_simulation:
26
+ - 102
27
+ - 102
28
+ grid_type: cartesian
data/test/acoustic_scattering_discontinuous_chunk_18.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba1bd990bc0e4b5ac99722f93086350de7c2d00980acf7275de7bec119b7f55e
3
+ size 8111783936
data/test/acoustic_scattering_discontinuous_chunk_19.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ada4c55dd6ae5ee511fbc102e8448815377f1a67414fb7832af4af68b30339f4
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_0.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89cc58f6bc178c445980d86c8ac23326b7c948fa3ccf456d48771a103bdd8588
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_1.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:261f8e55bc93039f36e5dd0a22e46578d260941afa7cb6271fe9376fe48764ab
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_10.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee1dc55e60304166c4987cdd49c5444578ede98c95054166eb899a3bc75b412d
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_11.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3bb691574f9db8446d7bd7d77e95aea3b0a0df0bbcb4f42ab7699bb7397db89
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_12.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:852849eab35e2b70d86e6afc6dc1eeffb33c4fd28b1b073bc68ae7988d29fdc5
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_13.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58ef135e709d2078a91f435264a8106bad25cfefde9d63e01590a88c8109a4c3
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_14.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a93647706406e72004f896265984c660d89bb973fc5230441b1550aba3b1e54
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_15.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0c8ca1059c1ffcb8fd963cca05a6784e2c42aeaab90923ddedac9d549a8a0c0
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_2.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd7f73617207688a39cdf40853a12e4c0a57a9f2c198168add324933f318b723
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_3.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74b98083be84d82fa1976eb1f17fbb09b3eb4ac3bc36b7549a189a0436a3b56f
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_4.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cd0dba38b52e3cd97c3543cab994c1c3b2f09e4287ede8eef916201e4256502
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_5.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:706b56b1ddd4c6a00b6721f8f882489ba80058b077c2ea5a9024d457fd7dacdf
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_6.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99ef738dde15999c4f1c0c736d1a0b76d7e32199e091fb1e0839b1b055e062c1
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_7.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1af11966317488ab67f700c80594722c3f7037678c6b88f32aedd6b4a11ebf6
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_8.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c0d74f83562a3446156741165f7d4b01f602c053f5116dc59938eaaabee7a26
3
+ size 8111783936
data/train/acoustic_scattering_discontinuous_chunk_9.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a08863920567dc8b233ee5eba0c16f974ebf165ea031082d3c46ecfc78dbeb10
3
+ size 8111783936
data/valid/acoustic_scattering_discontinuous_chunk_16.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4034dde5ced1ac0edfdc34098c2f0c24d9711df182b657149bbee3db0dbe824e
3
+ size 8111783936
data/valid/acoustic_scattering_discontinuous_chunk_17.hdf5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e816fd74fa644a61a0206ff590afd582ea372eb33505eca8eb2702c4a722fd91
3
+ size 8111783936
generation/acoustics_2d_interface_random_medium.py ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # encoding: utf-8
3
+ r"""
4
+ Two-dimensional variable-coefficient acoustics
5
+ ==============================================
6
+
7
+ Solve the variable-coefficient acoustics equations in 2D:
8
+
9
+ .. math::
10
+ p_t + K(x,y) (u_x + v_y) & = 0 \\
11
+ u_t + p_x / \rho(x,y) & = 0 \\
12
+ v_t + p_y / \rho(x,y) & = 0.
13
+
14
+ Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus,
15
+ and :math:`\rho(x,y)` is the density.
16
+
17
+ This example shows how to solve a problem with variable coefficients.
18
+ The left and right halves of the domain consist of different materials.
19
+ """
20
+
21
+ from functools import partial
22
+
23
+ import numpy as np
24
+ from scipy.ndimage import gaussian_filter
25
+
26
+
27
+ def setup(
28
+ kernel_language="Fortran",
29
+ use_petsc=False,
30
+ outdir="./_output",
31
+ solver_type="classic",
32
+ time_integrator="SSP104",
33
+ lim_type=2,
34
+ disable_output=False,
35
+ num_cells=(256, 256),
36
+ seed=None,
37
+ include_splits=True,
38
+ include_inclusions=True,
39
+ T_max=2.0,
40
+ num_steps=101,
41
+ ):
42
+ """
43
+ Example python script for solving the 2d acoustics equations.
44
+ """
45
+ from clawpack import riemann
46
+
47
+ if seed is None:
48
+ seed = np.random.default_rng()
49
+ if use_petsc:
50
+ import clawpack.petclaw as pyclaw
51
+ else:
52
+ from clawpack import pyclaw
53
+
54
+ if solver_type == "classic":
55
+ solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D)
56
+ solver.dimensional_split = False
57
+ solver.limiters = pyclaw.limiters.tvd.MC
58
+ elif solver_type == "sharpclaw":
59
+ solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D)
60
+ solver.time_integrator = time_integrator
61
+ if time_integrator == "SSPLMMk2":
62
+ solver.lmm_steps = 3
63
+ solver.cfl_max = 0.25
64
+ solver.cfl_desired = 0.24
65
+
66
+ solver.bc_lower[0] = pyclaw.BC.wall
67
+ solver.bc_upper[0] = pyclaw.BC.extrap
68
+ solver.bc_lower[1] = pyclaw.BC.wall
69
+ solver.bc_upper[1] = pyclaw.BC.extrap
70
+ solver.aux_bc_lower[0] = pyclaw.BC.wall
71
+ solver.aux_bc_upper[0] = pyclaw.BC.extrap
72
+ solver.aux_bc_lower[1] = pyclaw.BC.wall
73
+ solver.aux_bc_upper[1] = pyclaw.BC.extrap
74
+
75
+ x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x")
76
+ y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y")
77
+ domain = pyclaw.Domain([x, y])
78
+
79
+ num_eqn = 3
80
+ num_aux = 2 # density, sound speed
81
+ state = pyclaw.State(domain, num_eqn, num_aux)
82
+
83
+ grid = state.grid
84
+ X, Y = grid.p_centers
85
+ is_vert = seed.integers(0, 2)
86
+ midpoint = seed.uniform(-0.8, 0.8)
87
+ rho_left = seed.uniform(0.2, 7) # 4.0 # Density in left half
88
+ rho_right = seed.uniform(0.2, 7) # 1.0 # Density in right half
89
+ bulk_left = 4.0 # Bulk modulus in left half
90
+ bulk_right = 4.0 # Bulk modulus in right half
91
+
92
+ def gaussian_bump(
93
+ aux, mask, seed, rho_low=1, rho_high=7.0, sigma_low=0.1, sigma_high=5
94
+ ):
95
+ rho_bump = seed.uniform(rho_low, rho_high)
96
+ rho_base = seed.uniform(rho_low, rho_high)
97
+
98
+ Xmask = X[mask]
99
+ xmax = Xmask.max()
100
+ xmin = Xmask.min()
101
+ Ymask = Y[mask]
102
+ ymax = Ymask.max()
103
+ ymin = Ymask.min()
104
+
105
+ xc = seed.uniform(xmin, xmax)
106
+ yc = seed.uniform(ymin, ymax)
107
+ sigma = seed.uniform(sigma_low, sigma_high)
108
+ rho = rho_base + (rho_bump - rho_base) * np.exp(
109
+ -((Xmask - xc) ** 2 + (Ymask - yc) ** 2) / (sigma)
110
+ )
111
+ c = np.sqrt(bulk_left / rho)
112
+ aux[0][mask] = rho
113
+ aux[1][mask] = c
114
+
115
+ def linear_gradient(aux, mask, seed, rho_low=1, rho_high=7.0):
116
+ rho_x0 = seed.uniform(rho_low, rho_high)
117
+ rho_x1 = seed.uniform(rho_low, rho_high)
118
+ rho_y0 = seed.uniform(rho_low, rho_high)
119
+ rho_y1 = seed.uniform(rho_low, rho_high)
120
+
121
+ # Bilinearly interpolate between the four values
122
+ Xmask = (X[mask] + 1) / 2
123
+ xmax = Xmask.max()
124
+ xmin = Xmask.min()
125
+ Ymask = (Y[mask] + 1) / 2
126
+ ymax = Ymask.max()
127
+ ymin = Ymask.min()
128
+
129
+ Xrel = (Xmask - xmin) / (xmax - xmin)
130
+ Yrel = (Ymask - ymin) / (ymax - ymin)
131
+
132
+ rho = (
133
+ (1 - Xrel) * (1 - Yrel) * rho_x0
134
+ + Xrel * (1 - Yrel) * rho_x1
135
+ + (1 - Xrel) * Yrel * rho_y0
136
+ + Xrel * Yrel * rho_y1
137
+ )
138
+ c = np.sqrt(bulk_left / rho)
139
+ aux[0][mask] = rho
140
+ aux[1][mask] = c
141
+
142
+ def constant(aux, mask, seed, rho_low=1, rho_high=7.0):
143
+ rho = seed.uniform(rho_low, rho_high)
144
+ c = np.sqrt(bulk_left / rho)
145
+ aux[0][mask] = rho
146
+ aux[1][mask] = c
147
+
148
+ def smoothed_gaussian_noise(
149
+ aux, mask, seed, rho_low=1, rho_high=7.0, std=2, sigma_low=5, sigma_high=10
150
+ ):
151
+ rho = seed.uniform(rho_low, rho_high)
152
+ background = seed.standard_normal(mask.shape)
153
+ sigma = seed.uniform(sigma_low, sigma_high)
154
+
155
+ background = gaussian_filter(background, sigma)
156
+ rho = rho + background[mask]
157
+ c = np.sqrt(bulk_left / rho)
158
+ aux[0][mask] = rho
159
+ aux[1][mask] = c
160
+
161
+ gen_funcs = [gaussian_bump, linear_gradient, constant, smoothed_gaussian_noise]
162
+
163
+ c_left = np.sqrt(bulk_left / rho_left) # Sound speed (left)
164
+ if include_splits:
165
+ if is_vert:
166
+ mask = Y < midpoint
167
+ else:
168
+ mask = X < midpoint
169
+ seed.choice(gen_funcs)(state.aux, (~mask), seed)
170
+ else:
171
+ mask = np.ones_like(X, dtype=bool)
172
+ seed.choice(gen_funcs)(state.aux, mask, seed)
173
+
174
+ state.q[0, :, :] = 0.0
175
+ state.q[1, :, :] = 0.0
176
+ state.q[2, :, :] = 0.0
177
+ # Set initial condition
178
+ n_waves = seed.integers(1, 4)
179
+ for i in range(n_waves):
180
+ center = seed.uniform(-0.95, 0.95, 2)
181
+ x0 = center[0]
182
+ y0 = center[1]
183
+ width = seed.uniform(0.05, 0.15)
184
+ rad = seed.uniform(width + 0.01, 0.3)
185
+ intensity = seed.uniform(0.5, 2.0)
186
+ # x0 = -0.5; y0 = 0.
187
+ r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2)
188
+ # width = 0.1; rad = 0.25
189
+ state.q[0, :, :] += (np.abs(r - rad) <= width) * (
190
+ intensity + np.cos(np.pi * (r - rad) / width)
191
+ )
192
+
193
+ if include_inclusions:
194
+ n_inclusions = seed.integers(0, 15)
195
+ for i in range(n_inclusions):
196
+ # Copied elipse code from
197
+ g_ell_center = seed.uniform(-0.95, 0.95, 2)
198
+ rads = seed.uniform(0.05, 0.6, 2)
199
+ g_ell_width = rads[0]
200
+ g_ell_height = rads[1]
201
+ angle = seed.uniform(-45, 45)
202
+
203
+ cos_angle = np.cos(np.radians(180.0 - angle))
204
+ sin_angle = np.sin(np.radians(180.0 - angle))
205
+
206
+ xc = X - g_ell_center[0]
207
+ yc = Y - g_ell_center[1]
208
+
209
+ xct = xc * cos_angle - yc * sin_angle
210
+ yct = xc * sin_angle + yc * cos_angle
211
+
212
+ rad_cc = (xct**2 / (g_ell_width / 2.0) ** 2) + (
213
+ yct**2 / (g_ell_height / 2.0) ** 2
214
+ )
215
+
216
+ inclusion_rho = np.exp(seed.uniform(-1, 10))
217
+ # r = np.sqrt((X-x0)**2 + (Y-y0)**2)
218
+ c_left = np.sqrt(bulk_left / inclusion_rho) # Sound speed (left)
219
+ state.aux[0][rad_cc <= 1] = inclusion_rho
220
+ state.aux[1][rad_cc <= 1] = c_left
221
+ state.q[0][rad_cc <= 1] = 0.0
222
+
223
+ claw = pyclaw.Controller()
224
+ claw.keep_copy = True
225
+ if disable_output:
226
+ claw.output_format = None
227
+ claw.solution = pyclaw.Solution(state, domain)
228
+ claw.solver = solver
229
+ claw.outdir = outdir
230
+ claw.tfinal = T_max
231
+ claw.num_output_times = num_steps
232
+ claw.write_aux_init = True
233
+ claw.setplot = setplot
234
+ claw.output_options = {"format": "binary"}
235
+ if use_petsc:
236
+ claw.output_options = {"format": "binary"}
237
+
238
+ return claw
239
+
240
+
241
+ def setplot(plotdata):
242
+ """
243
+ Plot solution using VisClaw.
244
+
245
+ This example shows how to mark an internal boundary on a 2D plot.
246
+ """
247
+
248
+ from clawpack.visclaw import colormaps
249
+
250
+ plotdata.clearfigures() # clear any old figures,axes,items data
251
+
252
+ # Figure for pressure
253
+ plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0)
254
+
255
+ # Set up for axes in this figure:
256
+ plotaxes = plotfigure.new_plotaxes()
257
+ plotaxes.title = "Pressure"
258
+ plotaxes.scaled = True # so aspect ratio is 1
259
+ plotaxes.afteraxes = mark_interface
260
+
261
+ # Set up for item on these axes:
262
+ plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
263
+ plotitem.plot_var = 0
264
+ plotitem.pcolor_cmap = colormaps.yellow_red_blue
265
+ plotitem.add_colorbar = True
266
+ plotitem.pcolor_cmin = 0.0
267
+ plotitem.pcolor_cmax = 1.0
268
+
269
+ # Figure for x-velocity plot
270
+ plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1)
271
+
272
+ # Set up for axes in this figure:
273
+ plotaxes = plotfigure.new_plotaxes()
274
+ plotaxes.title = "u"
275
+ plotaxes.afteraxes = mark_interface
276
+
277
+ plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
278
+ plotitem.plot_var = 1
279
+ plotitem.pcolor_cmap = colormaps.yellow_red_blue
280
+ plotitem.add_colorbar = True
281
+ plotitem.pcolor_cmin = -0.3
282
+ plotitem.pcolor_cmax = 0.3
283
+
284
+ return plotdata
285
+
286
+
287
+ def mark_interface(current_data):
288
+ import matplotlib.pyplot as plt
289
+
290
+ plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2)
291
+
292
+
293
+ if __name__ == "__main__":
294
+ from clawpack.pyclaw.util import run_app_from_main
295
+
296
+ setup_wrapped = partial(setup, seed=np.random.default_rng(42))
297
+ output = run_app_from_main(setup_wrapped, setplot)
generation/generate_acoustics_data.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import multiprocessing as mp
3
+ from functools import partial
4
+
5
+ import numpy as np
6
+ from acoustics_2d_interface_maze import setup as maze_setup
7
+ from acoustics_2d_interface_random_medium import setup as random_setup
8
+
9
+ # Time/steps/samples
10
+ steps_map = {
11
+ "continuous": (2.0, 101, 2000),
12
+ "discontinuous": (2.0, 101, 2000),
13
+ "inclusions": (2.0, 101, 4000),
14
+ "maze": (4.0, 201, 2000),
15
+ }
16
+
17
+
18
+ def mp_wrapper(
19
+ seed,
20
+ discontinuous,
21
+ inclusions,
22
+ maze,
23
+ output_dir="/mnt/home/polymathic/ceph/the_well/testing_before_adding/clawpack_data/acoustics_2d_variable/",
24
+ ):
25
+ if discontinuous:
26
+ run_func = partial(
27
+ inner_gen_sample,
28
+ discontinuous=True,
29
+ inclusions=False,
30
+ maze=False,
31
+ output_dir=output_dir,
32
+ )
33
+ num_samples = 2000
34
+ elif inclusions:
35
+ run_func = partial(
36
+ inner_gen_sample,
37
+ discontinuous=False,
38
+ inclusions=True,
39
+ maze=False,
40
+ output_dir=output_dir,
41
+ )
42
+ num_samples = 4000
43
+ elif maze:
44
+ run_func = partial(
45
+ inner_gen_sample,
46
+ discontinuous=False,
47
+ inclusions=False,
48
+ maze=True,
49
+ output_dir=output_dir,
50
+ )
51
+ num_samples = 2000
52
+ else:
53
+ run_func = partial(
54
+ inner_gen_sample,
55
+ discontinuous=False,
56
+ inclusions=False,
57
+ maze=False,
58
+ output_dir=output_dir,
59
+ )
60
+ num_samples = 2000
61
+ cores = mp.cpu_count()
62
+ seeds = seed.spawn(num_samples)
63
+ with mp.Pool(cores // 2) as pool:
64
+ pool.map(run_func, seeds)
65
+ # run_func(seeds[0])
66
+
67
+
68
+ def inner_gen_sample(
69
+ seed=0, discontinuous=False, inclusions=False, maze=False, output_dir=""
70
+ ):
71
+ """
72
+ Iterate num samples times and enerate sample file. Use
73
+ it to overwrite qinit, then run .make output to generate trajectory.
74
+
75
+ Make sure overwrite is False in the make file before running.
76
+ """
77
+ # Check conditions and set up names
78
+ file_suffix = f"{str(seed.bit_generator.seed_seq.entropy)}_{str(seed.bit_generator.seed_seq.spawn_key)}"
79
+ if discontinuous:
80
+ file_suffix = "discontinuous_" + file_suffix
81
+ run_func = partial(
82
+ random_setup,
83
+ seed=seed,
84
+ include_splits=True,
85
+ include_inclusions=False,
86
+ outdir=output_dir + file_suffix,
87
+ T_max=2.0,
88
+ num_steps=101,
89
+ )
90
+ elif inclusions:
91
+ file_suffix = "inclusions_" + file_suffix
92
+ run_func = partial(
93
+ random_setup,
94
+ seed=seed,
95
+ include_splits=True,
96
+ include_inclusions=True,
97
+ outdir=output_dir + file_suffix,
98
+ T_max=2.0,
99
+ num_steps=101,
100
+ )
101
+ elif maze:
102
+ file_suffix = "maze_" + file_suffix
103
+ run_func = partial(
104
+ maze_setup,
105
+ seed=seed,
106
+ outdir=output_dir + file_suffix,
107
+ T_max=4.0,
108
+ num_steps=201,
109
+ )
110
+ else:
111
+ file_suffix = "continuous_" + file_suffix
112
+ run_func = partial(
113
+ random_setup,
114
+ seed=seed,
115
+ include_splits=False,
116
+ include_inclusions=False,
117
+ outdir=output_dir + file_suffix,
118
+ T_max=2.0,
119
+ num_steps=101,
120
+ )
121
+
122
+ claw = run_func(output_dir + file_suffix)
123
+ claw.run()
124
+
125
+
126
+ if __name__ == "__main__":
127
+ # print(len(gases))
128
+ parser = argparse.ArgumentParser(
129
+ description="Generate initial conditions for 2D Euler quadrants"
130
+ )
131
+ # parser.add_argument('--num_samples', type=int, default=1000, help='Number of samples to generate')
132
+ parser.add_argument(
133
+ "--discontinuity",
134
+ action="store_true",
135
+ help="Whether to generate random samples",
136
+ )
137
+ parser.add_argument(
138
+ "--inclusions", action="store_true", help="Whether to generate random samples"
139
+ )
140
+ parser.add_argument(
141
+ "--switch_to_maze",
142
+ action="store_true",
143
+ help="Whether to generate random samples",
144
+ )
145
+ # parser.add_argument('--bc', type=str, default='extrap', help='Boundary conditions')
146
+ # parser.add_argument('--gas_index', type=int, default=0, help='Index of gas to use (0-9 inclusive)')
147
+ parser.add_argument(
148
+ "--seed",
149
+ type=int,
150
+ default=0,
151
+ help="Seed for random samples - use different one per gas/bc if par",
152
+ )
153
+ parser.add_argument(
154
+ "--raw_output_dir",
155
+ type=str,
156
+ default=" /mnt/home/polymathic/ceph/the_well/testing_before_adding/clawpack_data/",
157
+ help="Directory to store raw output",
158
+ )
159
+ args = parser.parse_args()
160
+ seed = np.random.default_rng(
161
+ args.seed
162
+ + 100 * int(args.discontinuity)
163
+ + 1000 * int(args.inclusions)
164
+ + 10000 * int(args.switch_to_maze)
165
+ )
166
+ mp_wrapper(seed, args.discontinuity, args.inclusions, args.switch_to_maze)
generation/run_discontinuous.sh ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash -l
2
+ #SBATCH --time=24:00:00
3
+ #SBATCH -p cmbas
4
+ #SBATCH --nodes=1
5
+ #SBATCH --ntasks-per-node=1
6
+ #SBATCH -J acou_disccont
7
+ #SBATCH -o acou_disccont
8
+ #SBATCH -C icelake
9
+
10
+ source ~/venvs/clawpack/bin/activate
11
+
12
+ srun python generate_acoustics_data.py --discontinuity
gif/discontinuous_density.png ADDED

Git LFS Details

  • SHA256: 20f4195387e515a34ea242b640902689975576b45844fb600754b0034606a6ed
  • Pointer size: 131 Bytes
  • Size of remote file: 215 kB
stats.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ mean:
2
+ bulk_modulus: 1.084273461543434
3
+ density: 3.958672131453937
4
+ pressure: 0.10382298641950555
5
+ velocity:
6
+ - 0.004736874341594803
7
+ - 0.005733050392328638
8
+ std:
9
+ bulk_modulus: 0.27286848219233156
10
+ density: 1.5745694576257623
11
+ pressure: 0.31642700584198546
12
+ velocity:
13
+ - 0.05996821345863354
14
+ - 0.05960856047624785
visualization_acoustic_scattering_discontinuous.ipynb ADDED
The diff for this file is too large to render. See raw diff