#!/usr/bin/env python # encoding: utf-8 r""" Two-dimensional variable-coefficient acoustics ============================================== Solve the variable-coefficient acoustics equations in 2D: .. math:: p_t + K(x,y) (u_x + v_y) & = 0 \\ u_t + p_x / \rho(x,y) & = 0 \\ v_t + p_y / \rho(x,y) & = 0. Here p is the pressure, (u,v) is the velocity, :math:`K(x,y)` is the bulk modulus, and :math:`\rho(x,y)` is the density. This example shows how to solve a problem with variable coefficients. The left and right halves of the domain consist of different materials. """ from functools import partial import numpy as np from scipy.ndimage import gaussian_filter def setup( kernel_language="Fortran", use_petsc=False, outdir="./_output", solver_type="classic", time_integrator="SSP104", lim_type=2, disable_output=False, num_cells=(256, 256), seed=None, include_splits=True, include_inclusions=True, T_max=2.0, num_steps=101, ): """ Example python script for solving the 2d acoustics equations. """ from clawpack import riemann if seed is None: seed = np.random.default_rng() if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == "classic": solver = pyclaw.ClawSolver2D(riemann.vc_acoustics_2D) solver.dimensional_split = False solver.limiters = pyclaw.limiters.tvd.MC elif solver_type == "sharpclaw": solver = pyclaw.SharpClawSolver2D(riemann.vc_acoustics_2D) solver.time_integrator = time_integrator if time_integrator == "SSPLMMk2": solver.lmm_steps = 3 solver.cfl_max = 0.25 solver.cfl_desired = 0.24 solver.bc_lower[0] = pyclaw.BC.wall solver.bc_upper[0] = pyclaw.BC.extrap solver.bc_lower[1] = pyclaw.BC.wall solver.bc_upper[1] = pyclaw.BC.extrap solver.aux_bc_lower[0] = pyclaw.BC.wall solver.aux_bc_upper[0] = pyclaw.BC.extrap solver.aux_bc_lower[1] = pyclaw.BC.wall solver.aux_bc_upper[1] = pyclaw.BC.extrap x = pyclaw.Dimension(-1.0, 1.0, num_cells[0], name="x") y = pyclaw.Dimension(-1.0, 1.0, num_cells[1], name="y") domain = pyclaw.Domain([x, y]) num_eqn = 3 num_aux = 2 # density, sound speed state = pyclaw.State(domain, num_eqn, num_aux) grid = state.grid X, Y = grid.p_centers is_vert = seed.integers(0, 2) midpoint = seed.uniform(-0.8, 0.8) rho_left = seed.uniform(0.2, 7) # 4.0 # Density in left half rho_right = seed.uniform(0.2, 7) # 1.0 # Density in right half bulk_left = 4.0 # Bulk modulus in left half bulk_right = 4.0 # Bulk modulus in right half def gaussian_bump( aux, mask, seed, rho_low=1, rho_high=7.0, sigma_low=0.1, sigma_high=5 ): rho_bump = seed.uniform(rho_low, rho_high) rho_base = seed.uniform(rho_low, rho_high) Xmask = X[mask] xmax = Xmask.max() xmin = Xmask.min() Ymask = Y[mask] ymax = Ymask.max() ymin = Ymask.min() xc = seed.uniform(xmin, xmax) yc = seed.uniform(ymin, ymax) sigma = seed.uniform(sigma_low, sigma_high) rho = rho_base + (rho_bump - rho_base) * np.exp( -((Xmask - xc) ** 2 + (Ymask - yc) ** 2) / (sigma) ) c = np.sqrt(bulk_left / rho) aux[0][mask] = rho aux[1][mask] = c def linear_gradient(aux, mask, seed, rho_low=1, rho_high=7.0): rho_x0 = seed.uniform(rho_low, rho_high) rho_x1 = seed.uniform(rho_low, rho_high) rho_y0 = seed.uniform(rho_low, rho_high) rho_y1 = seed.uniform(rho_low, rho_high) # Bilinearly interpolate between the four values Xmask = (X[mask] + 1) / 2 xmax = Xmask.max() xmin = Xmask.min() Ymask = (Y[mask] + 1) / 2 ymax = Ymask.max() ymin = Ymask.min() Xrel = (Xmask - xmin) / (xmax - xmin) Yrel = (Ymask - ymin) / (ymax - ymin) rho = ( (1 - Xrel) * (1 - Yrel) * rho_x0 + Xrel * (1 - Yrel) * rho_x1 + (1 - Xrel) * Yrel * rho_y0 + Xrel * Yrel * rho_y1 ) c = np.sqrt(bulk_left / rho) aux[0][mask] = rho aux[1][mask] = c def constant(aux, mask, seed, rho_low=1, rho_high=7.0): rho = seed.uniform(rho_low, rho_high) c = np.sqrt(bulk_left / rho) aux[0][mask] = rho aux[1][mask] = c def smoothed_gaussian_noise( aux, mask, seed, rho_low=1, rho_high=7.0, std=2, sigma_low=5, sigma_high=10 ): rho = seed.uniform(rho_low, rho_high) background = seed.standard_normal(mask.shape) sigma = seed.uniform(sigma_low, sigma_high) background = gaussian_filter(background, sigma) rho = rho + background[mask] c = np.sqrt(bulk_left / rho) aux[0][mask] = rho aux[1][mask] = c gen_funcs = [gaussian_bump, linear_gradient, constant, smoothed_gaussian_noise] c_left = np.sqrt(bulk_left / rho_left) # Sound speed (left) if include_splits: if is_vert: mask = Y < midpoint else: mask = X < midpoint seed.choice(gen_funcs)(state.aux, (~mask), seed) else: mask = np.ones_like(X, dtype=bool) seed.choice(gen_funcs)(state.aux, mask, seed) state.q[0, :, :] = 0.0 state.q[1, :, :] = 0.0 state.q[2, :, :] = 0.0 # Set initial condition n_waves = seed.integers(1, 4) for i in range(n_waves): center = seed.uniform(-0.95, 0.95, 2) x0 = center[0] y0 = center[1] width = seed.uniform(0.05, 0.15) rad = seed.uniform(width + 0.01, 0.3) intensity = seed.uniform(0.5, 2.0) # x0 = -0.5; y0 = 0. r = np.sqrt((X - x0) ** 2 + (Y - y0) ** 2) # width = 0.1; rad = 0.25 state.q[0, :, :] += (np.abs(r - rad) <= width) * ( intensity + np.cos(np.pi * (r - rad) / width) ) if include_inclusions: n_inclusions = seed.integers(0, 15) for i in range(n_inclusions): # Copied elipse code from g_ell_center = seed.uniform(-0.95, 0.95, 2) rads = seed.uniform(0.05, 0.6, 2) g_ell_width = rads[0] g_ell_height = rads[1] angle = seed.uniform(-45, 45) cos_angle = np.cos(np.radians(180.0 - angle)) sin_angle = np.sin(np.radians(180.0 - angle)) xc = X - g_ell_center[0] yc = Y - g_ell_center[1] xct = xc * cos_angle - yc * sin_angle yct = xc * sin_angle + yc * cos_angle rad_cc = (xct**2 / (g_ell_width / 2.0) ** 2) + ( yct**2 / (g_ell_height / 2.0) ** 2 ) inclusion_rho = np.exp(seed.uniform(-1, 10)) # r = np.sqrt((X-x0)**2 + (Y-y0)**2) c_left = np.sqrt(bulk_left / inclusion_rho) # Sound speed (left) state.aux[0][rad_cc <= 1] = inclusion_rho state.aux[1][rad_cc <= 1] = c_left state.q[0][rad_cc <= 1] = 0.0 claw = pyclaw.Controller() claw.keep_copy = True if disable_output: claw.output_format = None claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.tfinal = T_max claw.num_output_times = num_steps claw.write_aux_init = True claw.setplot = setplot claw.output_options = {"format": "binary"} if use_petsc: claw.output_options = {"format": "binary"} return claw def setplot(plotdata): """ Plot solution using VisClaw. This example shows how to mark an internal boundary on a 2D plot. """ from clawpack.visclaw import colormaps plotdata.clearfigures() # clear any old figures,axes,items data # Figure for pressure plotfigure = plotdata.new_plotfigure(name="Pressure", figno=0) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = "Pressure" plotaxes.scaled = True # so aspect ratio is 1 plotaxes.afteraxes = mark_interface # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") plotitem.plot_var = 0 plotitem.pcolor_cmap = colormaps.yellow_red_blue plotitem.add_colorbar = True plotitem.pcolor_cmin = 0.0 plotitem.pcolor_cmax = 1.0 # Figure for x-velocity plot plotfigure = plotdata.new_plotfigure(name="x-Velocity", figno=1) # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.title = "u" plotaxes.afteraxes = mark_interface plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor") plotitem.plot_var = 1 plotitem.pcolor_cmap = colormaps.yellow_red_blue plotitem.add_colorbar = True plotitem.pcolor_cmin = -0.3 plotitem.pcolor_cmax = 0.3 return plotdata def mark_interface(current_data): import matplotlib.pyplot as plt plt.plot((0.0, 0.0), (-1.0, 1.0), "-k", linewidth=2) if __name__ == "__main__": from clawpack.pyclaw.util import run_app_from_main setup_wrapped = partial(setup, seed=np.random.default_rng(42)) output = run_app_from_main(setup_wrapped, setplot)