File size: 1,937 Bytes
93e438f 2d217a3 93e438f 2d217a3 1f3de13 93e438f 2d217a3 1f3de13 93e438f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
#!/bin/env python
""" Work in progress
temp utility.
Load in two pre-calculated embeddings files.
(eg: *.allid.*)
Go through the full range and calculate distances between each.
Add up and display
This covers the full official range of tokenids,
0-49405
"""
import sys
import torch
from safetensors import safe_open
file1=sys.argv[1]
file2=sys.argv[2]
device=torch.device("cuda")
print(f"reading {file1} embeddings now",file=sys.stderr)
model = safe_open(file1,framework="pt",device="cuda")
embs1=model.get_tensor("embeddings")
embs1.to(device)
print("Shape of loaded embeds =",embs1.shape)
print(f"reading {file2} embeddings now",file=sys.stderr)
model = safe_open(file2,framework="pt",device="cuda")
embs2=model.get_tensor("embeddings")
embs2.to(device)
print("Shape of loaded embeds =",embs2.shape)
if torch.equal(embs1 , embs2):
print("HEY! Both files are identical!")
exit(0)
print(f"calculating distances...")
# This calculates a full cross matrix of ALL distances to ALL other points
# in other tensor
##targetdistances = torch.cdist( embs1,embs2, p=2)
targetdistances = torch.norm(embs2 - embs1, dim=1)
#print(targetdistances.shape)
#tl=targetdistances.tolist()
#print(tl[:10])
print("sum of all distances=",torch.sum(targetdistances))
embs1_avg=torch.mean(embs1,dim=0)
embs2_avg=torch.mean(embs2,dim=0)
avg_dist= torch.cdist( embs1_avg.unsqueeze(0),embs2_avg.unsqueeze(0), p=2)
print("However, the distance between the avg-point of each is:",avg_dist)
######################################
import PyQt5
import matplotlib
matplotlib.use('QT5Agg') # Set the backend to QT5Agg
import matplotlib.pyplot as plt
junk, ax = plt.subplots()
graph1=targetdistances.tolist()
ax.plot(graph1, label="Distance between same tokenID")
ax.set_title("Comparison between two CLIPTextModel datasets")
ax.set_ylabel("Distance")
ax.set_xlabel("CLIP TokenID")
ax.legend()
plt.show()
|