File size: 2,712 Bytes
c992dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b5e170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c992dd1
 
 
 
7b5e170
 
 
 
 
c992dd1
e9623ba
c992dd1
 
075cee0
 
c992dd1
7b5e170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c992dd1
e9623ba
 
 
 
 
7b5e170
 
e9623ba
7b5e170
 
eb222a6
 
7b5e170
 
 
eb222a6
 
 
e9623ba
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/python3

""" Work in progress
Plan:
   Read in fullword.json for list of words and token
   Read in pre-calculated "proper" embedding for each token from safetensor file
   Generate a tensor array of distance for each token, to every other token/embedding
   Save it out
"""


import sys
import json
import torch
from safetensors import safe_open

from transformers import CLIPProcessor,CLIPModel

clipsrc="openai/clip-vit-large-patch14"
processor=None
model=None

device=torch.device("cuda")


def init():
    global processor
    global model
    # Load the processor and model
    print("loading processor from "+clipsrc,file=sys.stderr)
    processor = CLIPProcessor.from_pretrained(clipsrc)
    print("done",file=sys.stderr)
    print("loading model from "+clipsrc,file=sys.stderr)
    model = CLIPModel.from_pretrained(clipsrc)
    print("done",file=sys.stderr)

    model = model.to(device)



embed_file="embeddings.safetensors"

device=torch.device("cuda")

print("read in words from dictionary now",file=sys.stderr)
with open("dictionary","r") as f:
    tokendict = f.readlines()
    wordlist = [token.strip() for token in tokendict]  # Remove trailing newlines
print(len(wordlist),"lines read")

print("read in embeddings now",file=sys.stderr)
model = safe_open(embed_file,framework="pt",device="cuda")
embs=model.get_tensor("embeddings")
embs.to(device)
print("Shape of loaded embeds =",embs.shape)

def standard_embed_calc(text):
    if processor == None:
        init()

    inputs = processor(text=text, return_tensors="pt")
    inputs.to(device)
    with torch.no_grad():
        text_features = model.get_text_features(**inputs)
    embedding = text_features[0]
    return embedding


def print_distances(targetemb):
    targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)

    print("shape of distances...",targetdistances.shape)

    smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)

    smallest_distances=smallest_distances.tolist()
    smallest_indices=smallest_indices.tolist()
    for d,i in zip(smallest_distances,smallest_indices):
        print(wordlist[i],"(",d,")")



# Find 10 closest tokens to targetword.
# Will include the word itself
def find_closest(targetword):
    try:
        targetindex=wordlist.index(targetword)
        targetemb=embs[targetindex]
        print_distances(targetemb)
        return
    except ValueError:
        print(targetword,"not found in cache")


    print("Now doing with full calc embed")
    targetemb=standard_embed_calc(targetword)
    print_distances(targetemb)



print("Input a word now:")
for line in sys.stdin:
    input_text = line.rstrip()
    find_closest(input_text)