|
|
|
|
|
""" |
|
(SDXL counterpart of "cliptextmodel-generate-embeddings.py". |
|
Not following that name, because we dont use "cliptextmodel") |
|
|
|
Take filenames of an SDXL clip-g type text_encoder2 and config file |
|
Read in a wordlist from "dictionary" |
|
Generate the official "embedding" tensor for each one. |
|
Save the result set to "{outputfile}" |
|
|
|
Defaults to loading openai/clip-vit-large-patch14 from huggingface hub, |
|
for purposes of tokenizer, since thats what sdxl does anyway |
|
|
|
RULES of the loader: |
|
1. The text_encoder2 model file must appear to be either |
|
in current directory or one down. So, do NOT use |
|
badpath1=some/directory/tree/file.here |
|
badpath2=/absolutepath |
|
2. Yes, you MUST have a matching config.json file |
|
3. if you have no safetensor alternative, you can get away with using pytorch_model.bin |
|
|
|
Sample location for such things that you can download: |
|
https://huggingface.co/stablediffusionapi/edge-of-realism/tree/main/text_encoder/ |
|
If there is a .safetensors AND a .bin file, ignore the .bin file |
|
|
|
Alternatively, you can also convert a singlefile model, such as is downloaded from civitai, |
|
by using the utility at |
|
https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py |
|
Args should look like |
|
convert_original_stable_diffusion_to_diffusers.py \ |
|
--checkpoint_file somemodel.safetensors \ |
|
--dump_path extractdir --to_safetensors --from_safetensors |
|
|
|
""" |
|
|
|
|
|
outputfile="embeddingsXL.temp.safetensors" |
|
|
|
import sys |
|
import torch |
|
from safetensors.torch import save_file |
|
from transformers import CLIPProcessor, CLIPTextModel, CLIPTextModelWithProjection |
|
|
|
processor=None |
|
|
|
|
|
tmodel2=None |
|
model_path2=None |
|
model_config2=None |
|
|
|
if len(sys.argv) == 3: |
|
model_path2=sys.argv[1] |
|
model_config2=sys.argv[2] |
|
else: |
|
print("You have to give name of modelfile and config file") |
|
sys.exit(1) |
|
|
|
device=torch.device("cuda") |
|
|
|
|
|
|
|
def initXLCLIPmodel(model_path,model_config): |
|
global tmodel2,processor |
|
|
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
print("loading",model_path) |
|
tmodel2 = CLIPTextModelWithProjection.from_pretrained(model_path,config=model_config,local_files_only=True,use_safetensors=True) |
|
tmodel2.to(device) |
|
|
|
|
|
def embed_from_text2(text): |
|
global processor,tmodel2 |
|
inputs = processor(text=text, return_tensors="pt") |
|
inputs.to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = tmodel2(**inputs) |
|
embeddings = outputs.text_embeds |
|
return embeddings |
|
|
|
|
|
|
|
def embed_from_inputs(inputs): |
|
global processor,tmodel2 |
|
with torch.no_grad(): |
|
outputs = tmodel2(**inputs) |
|
embedding = outputs.text_embeds |
|
|
|
return embedding |
|
|
|
|
|
initXLCLIPmodel(model_path2,model_config2) |
|
inputs = processor(text="dummy", return_tensors="pt") |
|
inputs.to(device) |
|
|
|
|
|
with open("dictionary","r") as f: |
|
tokendict = f.readlines() |
|
tokendict = [token.strip() for token in tokendict] |
|
|
|
|
|
count=1 |
|
all_embeddings = [] |
|
|
|
for word in tokendict: |
|
emb = embed_from_text2(word) |
|
emb=emb.unsqueeze(0) |
|
all_embeddings.append(emb) |
|
count+=1 |
|
if (count %100) ==0: |
|
print(count) |
|
|
|
|
|
|
|
""" |
|
for id in range(49405): |
|
inputs.input_ids[0][1]=id |
|
|
|
emb=embed_from_inputs(inputs) |
|
all_embeddings.append(emb) |
|
if (id %100) ==0: |
|
print(id) |
|
""" |
|
|
|
embs = torch.cat(all_embeddings,dim=0) |
|
print("Shape of result = ",embs.shape) |
|
|
|
print(f"Saving the calculatiuons to {outputfile}...") |
|
save_file({"embeddings": embs}, outputfile) |
|
|
|
|
|
|