|
|
|
|
|
""" Work in progress |
|
Plan: |
|
Generate two embeddings, from text prompts. |
|
Create comparative graph of their values |
|
""" |
|
|
|
|
|
import sys |
|
import json |
|
import torch |
|
from transformers import CLIPProcessor,CLIPModel |
|
|
|
import PyQt5 |
|
import matplotlib |
|
matplotlib.use('QT5Agg') |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
clipsrc="openai/clip-vit-large-patch14" |
|
processor=None |
|
model=None |
|
|
|
device=torch.device("cuda") |
|
|
|
|
|
def init(): |
|
global processor |
|
global model |
|
|
|
print("loading processor from "+clipsrc,file=sys.stderr) |
|
processor = CLIPProcessor.from_pretrained(clipsrc) |
|
print("done",file=sys.stderr) |
|
print("loading model from "+clipsrc,file=sys.stderr) |
|
model = CLIPModel.from_pretrained(clipsrc) |
|
print("done",file=sys.stderr) |
|
|
|
model = model.to(device) |
|
|
|
|
|
def standard_embed_calc(text): |
|
inputs = processor(text=text, return_tensors="pt") |
|
inputs.to(device) |
|
with torch.no_grad(): |
|
text_features = model.get_text_features(**inputs) |
|
embedding = text_features[0] |
|
return embedding |
|
|
|
|
|
init() |
|
|
|
text1 = input("First word or prompt? ") |
|
text2 = input("Second word or prompt? ") |
|
|
|
|
|
print("generating embeddings for each now") |
|
emb1 = standard_embed_calc(text1) |
|
emb2 = standard_embed_calc(text2) |
|
|
|
graph1=emb1.tolist() |
|
graph2=emb2.tolist() |
|
|
|
fig, ax = plt.subplots() |
|
|
|
|
|
ax.plot(graph1, label=text1[:20]) |
|
ax.plot(graph2, label=text2[:20]) |
|
|
|
|
|
|
|
ax.set_ylabel('Values') |
|
ax.set_title('Comparative Graph of Two Embeddings') |
|
ax.legend() |
|
|
|
|
|
print("Pulling up the graph") |
|
plt.show() |
|
|