tokenspace / generate-dict-embeddingsXL.py
ppbrown's picture
Update generate-dict-embeddingsXL.py
5a1142f verified
#!/bin/env python
"""
(SDXL counterpart of "cliptextmodel-generate-embeddings.py".
Not following that name, because we dont use "cliptextmodel")
Take filenames of an SDXL clip-g type text_encoder2 and config file
Read in a wordlist from "dictionary"
Generate the official "embedding" tensor for each one.
Save the result set to "{outputfile}"
Defaults to loading openai/clip-vit-large-patch14 from huggingface hub,
for purposes of tokenizer, since thats what sdxl does anyway
RULES of the loader:
1. The text_encoder2 model file must appear to be either
in current directory or one down. So, do NOT use
badpath1=some/directory/tree/file.here
badpath2=/absolutepath
2. Yes, you MUST have a matching config.json file
3. if you have no safetensor alternative, you can get away with using pytorch_model.bin
Sample location for such things that you can download:
https://huggingface.co/stablediffusionapi/edge-of-realism/tree/main/text_encoder/
If there is a .safetensors AND a .bin file, ignore the .bin file
Alternatively, you can also convert a singlefile model, such as is downloaded from civitai,
by using the utility at
https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py
Args should look like
convert_original_stable_diffusion_to_diffusers.py \
--checkpoint_file somemodel.safetensors \
--dump_path extractdir --to_safetensors --from_safetensors
"""
outputfile="embeddingsXL.temp.safetensors"
import sys
import torch
from safetensors.torch import save_file
from transformers import CLIPProcessor, CLIPTextModel, CLIPTextModelWithProjection
processor=None
tmodel2=None
model_path2=None
model_config2=None
if len(sys.argv) == 3:
model_path2=sys.argv[1]
model_config2=sys.argv[2]
else:
print("You have to give name of modelfile and config file")
sys.exit(1)
device=torch.device("cuda")
def initXLCLIPmodel(model_path,model_config):
global tmodel2,processor
# yes, oddly they all uses the same one, basically
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
print("loading",model_path)
tmodel2 = CLIPTextModelWithProjection.from_pretrained(model_path,config=model_config,local_files_only=True,use_safetensors=True)
tmodel2.to(device)
def embed_from_text2(text):
global processor,tmodel2
inputs = processor(text=text, return_tensors="pt")
inputs.to(device)
with torch.no_grad():
outputs = tmodel2(**inputs)
embeddings = outputs.text_embeds
return embeddings
# "inputs" == magic pre-embedding format
def embed_from_inputs(inputs):
global processor,tmodel2
with torch.no_grad():
outputs = tmodel2(**inputs)
embedding = outputs.text_embeds
return embedding
initXLCLIPmodel(model_path2,model_config2)
inputs = processor(text="dummy", return_tensors="pt")
inputs.to(device)
with open("dictionary","r") as f:
tokendict = f.readlines()
tokendict = [token.strip() for token in tokendict] # Remove trailing newlines
count=1
all_embeddings = []
for word in tokendict:
emb = embed_from_text2(word)
#emb=emb.unsqueeze(0) # stupid matrix magic to make torch.cat work
all_embeddings.append(emb)
count+=1
if (count %100) ==0:
print(count)
"""
for id in range(49405):
inputs.input_ids[0][1]=id
emb=embed_from_inputs(inputs)
all_embeddings.append(emb)
if (id %100) ==0:
print(id)
"""
embs = torch.cat(all_embeddings,dim=0)
print("Shape of result = ",embs.shape)
if len(embs.shape) != 2:
print("Sanity check: result is wrong shape: it wont work")
print(f"Saving the calculatiuons to {outputfile}...")
save_file({"embeddings": embs}, outputfile)