#!/bin/env python """ (SDXL counterpart of "cliptextmodel-generate-embeddings.py". Not following that name, because we dont use "cliptextmodel") Take filenames of an SDXL clip-g type text_encoder2 and config file Read in a wordlist from "dictionary" Generate the official "embedding" tensor for each one. Save the result set to "{outputfile}" Defaults to loading openai/clip-vit-large-patch14 from huggingface hub, for purposes of tokenizer, since thats what sdxl does anyway RULES of the loader: 1. The text_encoder2 model file must appear to be either in current directory or one down. So, do NOT use badpath1=some/directory/tree/file.here badpath2=/absolutepath 2. Yes, you MUST have a matching config.json file 3. if you have no safetensor alternative, you can get away with using pytorch_model.bin Sample location for such things that you can download: https://huggingface.co/stablediffusionapi/edge-of-realism/tree/main/text_encoder/ If there is a .safetensors AND a .bin file, ignore the .bin file Alternatively, you can also convert a singlefile model, such as is downloaded from civitai, by using the utility at https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py Args should look like convert_original_stable_diffusion_to_diffusers.py \ --checkpoint_file somemodel.safetensors \ --dump_path extractdir --to_safetensors --from_safetensors """ outputfile="embeddingsXL.temp.safetensors" import sys import torch from safetensors.torch import save_file from transformers import CLIPProcessor, CLIPTextModel, CLIPTextModelWithProjection processor=None tmodel2=None model_path2=None model_config2=None if len(sys.argv) == 3: model_path2=sys.argv[1] model_config2=sys.argv[2] else: print("You have to give name of modelfile and config file") sys.exit(1) device=torch.device("cuda") def initXLCLIPmodel(model_path,model_config): global tmodel2,processor # yes, oddly they all uses the same one, basically processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") print("loading",model_path) tmodel2 = CLIPTextModelWithProjection.from_pretrained(model_path,config=model_config,local_files_only=True,use_safetensors=True) tmodel2.to(device) def embed_from_text2(text): global processor,tmodel2 inputs = processor(text=text, return_tensors="pt") inputs.to(device) with torch.no_grad(): outputs = tmodel2(**inputs) embeddings = outputs.text_embeds return embeddings # "inputs" == magic pre-embedding format def embed_from_inputs(inputs): global processor,tmodel2 with torch.no_grad(): outputs = tmodel2(**inputs) embedding = outputs.text_embeds return embedding initXLCLIPmodel(model_path2,model_config2) inputs = processor(text="dummy", return_tensors="pt") inputs.to(device) with open("dictionary","r") as f: tokendict = f.readlines() tokendict = [token.strip() for token in tokendict] # Remove trailing newlines count=1 all_embeddings = [] for word in tokendict: emb = embed_from_text2(word) emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work all_embeddings.append(emb) count+=1 if (count %100) ==0: print(count) """ for id in range(49405): inputs.input_ids[0][1]=id emb=embed_from_inputs(inputs) all_embeddings.append(emb) if (id %100) ==0: print(id) """ embs = torch.cat(all_embeddings,dim=0) print("Shape of result = ",embs.shape) print(f"Saving the calculatiuons to {outputfile}...") save_file({"embeddings": embs}, outputfile)