import datasets import json import os _CITATION = """\ @InProceedings{huggingface:dataset, title = {Small image-text set}, author={James Briggs}, year={2022} } """ _DESCRIPTION = """\ Demo dataset for testing or showing image-text capabilities. """ _HOMEPAGE = "https://huggingface.co/datasets/ppp121386/Image-demo" _LICENSE = "" _REPO_URL = "https://huggingface.co/datasets/ppp121386/Image-demo/resolve/main/images.tar.gz" _CAPTION_URL = "https://huggingface.co/datasets/ppp121386/Image-demo/resolve/main/caption.json" # _CAPTION = ["a dog sitting on a bed looking at a pink wall","a brown dog sitting in front of a pink wall","two people are cross country skiing in the snow","a woman is cross country skiing in the snow","a woman is cross country skiing in the snow"] class ImageSet(datasets.GeneratorBasedBuilder): """Small sample of image-text pairs""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'text': datasets.Value("string"), 'image': datasets.Image(), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): images_archive = dl_manager.download(_REPO_URL) image_iters = dl_manager.iter_archive(images_archive) filepath = dl_manager.download_and_extract(_CAPTION_URL) # caption_iters = dl_manager.iter_archive(caption_archive) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": image_iters, "filepath": filepath } ), ] def _generate_examples(self, images, filepath): """ This function returns the examples in the raw (text) form.""" _CAPTION = json.load(open(filepath, 'r')) for idx, (imgpath, image) in enumerate(images): # description = filepath.split('/')[-1][:-4] # description = description.replace('_', ' ') yield idx, { "image": {"path": imgpath, "bytes": image.read()}, "text": _CAPTION[idx], }