File size: 5,069 Bytes
89bc030
 
 
 
 
 
 
 
 
 
 
 
59b99b1
89bc030
ee0a17c
89bc030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfaeff2
89bc030
 
 
 
 
 
 
 
2178182
89bc030
 
 
2178182
 
89bc030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178182
89bc030
2178182
89bc030
 
2178182
89bc030
 
a378726
 
89bc030
 
 
 
 
a378726
89bc030
 
 
a378726
89bc030
 
2178182
89bc030
 
 
 
2178182
89bc030
 
 
2178182
89bc030
 
 
2178182
89bc030
 
 
2178182
a378726
89bc030
a378726
89bc030
2178182
a378726
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import datasets
import pickle

_DESCRIPTION = """\
    Dataset for storing training metrics of pythia models 
"""

class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
    
    MODEL_SIZES = [ 
        "70m", 
        "160m", 
        #"410m",
        "1.4b",
        #"2.8b",
    ]

    _GRADIENTS_DESCRIPTION = """\
        Dataset for storing gradients of pythia models 
    """

    _WEIGHTS_DESCRIPTION = """\
        Dataset for storing weights of pythia models 
    """

    _WEIGHTS_MINI_DESCRIPTION = """\
        Dataset for storing weights of pythia models (minimizes the amount of gradients per 
        checkpoint to only 2)
    """

    _ACTIVATIONS_DESCRIPTION = """\
        Dataset for storing activations of pythia models 
    """
   
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="gradients",
            description=_WEIGHTS_DESCRIPTION,
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="gradients_mini",
            description=_WEIGHTS_MINI_DESCRIPTION,
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="activations",
            description=_ACTIVATIONS_DESCRIPTION,
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="weights",
            description=_WEIGHTS_DESCRIPTION,
            version="1.0.0",
        ),
  ]

    def _info(self):
        """
        NOTE: we might want to specify features, but since the featuers are different for each
        model size it's annoying and kind of pointless since hf does it automatically 
        """

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
        )


    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """ 
        Returns data for different splits - we define a split as a model size. 
        """

        model_size_to_fp = { model_size: [] for model_size in self.MODEL_SIZES }

        checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ]
        checkpoint_steps.extend([3000 + (i * 10000) for i in range(0, 15)])

        def get_gradient_step(step: int): 
            """
            Return a list of the gradient steps that are used at a given checkpoint step. 
            """
            return list(range(max(0, step-5), min(step+6, 143_000))) 

        for model_size in self.MODEL_SIZES:
            for checkpoint_step in checkpoint_steps:

                directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}"

                if self.config.name == "activations": 
                    model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle")
                elif self.config.name == "weights":
                    model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle")
                elif self.config.name == "gradients":
                    for gradient_step in get_gradient_step(checkpoint_step):
                        model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
                elif self.config.name == "gradients_mini":
                    for gradient_step in get_gradient_step(checkpoint_step)[:2]:
                        model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle")
                else: 
                    raise Exception("Invalid config name")

        downloaded_files = dl_manager.download_and_extract(model_size_to_fp)

        return [
            datasets.SplitGenerator(
                name=model_size_name,
                gen_kwargs={
                    "filepaths": downloaded_fps
                }
            )  for model_size_name, downloaded_fps in downloaded_files.items()
        ]

    def _generate_examples(self, filepaths):

        # the filepaths should be a list of filepaths 
        if isinstance(filepaths, str):
            filepaths = [filepaths]

        global_idx = 0 # the unique identifier for the example 

        for filepath in filepaths:
            with open(filepath, 'rb') as f:
                data = pickle.load(f)

                # extract checkpoint step from the filepath
                checkpoint_step = int(filepath.split("/")[-2].split("_")[-1])
                
                if self.config.name in ["activations", "weights"]:
                    for layer_name, layer_data in data.items():
                        yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "data": layer_data}
                        global_idx += 1
                elif self.config.name in ["gradients", "gradients_mini"]:
                    gradient_step = int(filepath.split('/')[-1].split("_")[-1].split(".")[0])
                    for layer_name, layer_data in data.items():
                        yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "gradient_step": gradient_step, "data": layer_data}
                        global_idx += 1