File size: 1,705 Bytes
16c5982
 
 
 
 
 
 
 
 
a30a71f
a55caa7
 
 
 
 
 
16c5982
a55caa7
 
a30a71f
 
 
 
 
 
c7d0c69
16c5982
 
 
79c2c58
a30a71f
 
 
8810075
 
7ef7109
a30a71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5189a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 12173747703
    num_examples: 7224600
  - name: val
    num_bytes: 1352108669.283
    num_examples: 802733
  - name: test
    num_bytes: 1484450563.896
    num_examples: 891924
  download_size: 12115256620
  dataset_size: 15010306936.179
task_categories:
- image-to-text
language:
- en
size_categories:
- 1M<n<10M
pretty_name: MJSynth
---
# Dataset Card for "MJSynth_text_recognition"

This is the MJSynth dataset for text recognition on document images, synthetically generated, covering 90K English words.
It includes training, validation and test splits.
Source of the dataset: https://www.robots.ox.ac.uk/~vgg/data/text/

Use dataset streaming functionality to try out the dataset quickly without downloading the entire dataset (refer: https://huggingface.co/docs/datasets/stream)

Citation details provided on the source website (if you use the data please cite):

@InProceedings{Jaderberg14c,
  author       = "Max Jaderberg and Karen Simonyan and Andrea Vedaldi and Andrew Zisserman",
  title        = "Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition",
  booktitle    = "Workshop on Deep Learning, NIPS",
  year         = "2014",
}
                
@Article{Jaderberg16,
  author       = "Max Jaderberg and Karen Simonyan and Andrea Vedaldi and Andrew Zisserman",
  title        = "Reading Text in the Wild with Convolutional Neural Networks",
  journal      = "International Journal of Computer Vision",
  number       = "1",
  volume       = "116",
  pages        = "1--20",
  month        = "jan",
  year         = "2016",
}