Datasets:

ArXiv:
License:
File size: 8,857 Bytes
a199a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from dataclasses import dataclass
from pathlib import Path

import numpy as np
from loguru import logger
from nymeria.body_motion_provider import create_body_data_provider
from nymeria.handeye import HandEyeSolver
from nymeria.path_provider import SequencePathProvider
from nymeria.recording_data_provider import (
    create_recording_data_provider,
    RecordingDataProvider,
)
from projectaria_tools.core.mps import ClosedLoopTrajectoryPose
from projectaria_tools.core.sensor_data import TimeDomain
from projectaria_tools.core.sophus import SE3


@dataclass(frozen=True)
class NymeriaDataProviderConfig:
    sequence_rootdir: Path
    load_head: bool = True
    load_observer: bool = True
    load_wrist: bool = True
    load_body: bool = True

    # If true, the filtered semidense points are exported into a npz file at the first loading
    view_cached_points: bool = True
    # Parameters for filtering semidense points
    th_invdep: float = 0.0004
    th_dep: float = 0.02
    max_point_count: int = 100_000

    trajectory_sample_fps: float = 1

    # Parameters for solving XSens to Aria world coordinates alignment
    handeye_smooth: bool = False
    handeye_window: int = 240 * 120
    handeye_skip: int = 240 * 5
    handeye_stride: int = 2


class NymeriaDataProvider(NymeriaDataProviderConfig):
    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)

        seq_pd = SequencePathProvider(self.sequence_rootdir)

        # create data provider for Aria recordings and MPS output
        self.recording_head = (
            create_recording_data_provider(seq_pd.recording_head)
            if self.load_head
            else None
        )
        self.recording_lwrist = (
            create_recording_data_provider(seq_pd.recording_lwrist)
            if self.load_wrist
            else None
        )
        self.recording_rwrist = (
            create_recording_data_provider(seq_pd.recording_rwrist)
            if self.load_wrist
            else None
        )
        self.recording_observer = (
            create_recording_data_provider(seq_pd.recording_observer)
            if self.load_observer
            else None
        )

        # create data provider for body motion
        self.body_dp = (
            create_body_data_provider(
                xdata_npz=seq_pd.body_paths.xsens_processed,
                xdata_glb=seq_pd.body_paths.momentum_model,
            )
            if self.load_body
            else None
        )

        if self.body_dp is None and len(self.get_existing_recordings()) == 0:
            raise RuntimeError(
                "data provider is empty. "
                "Make sure there is at least 1 recording or body motion"
            )

        # get overlapping timeline
        self.timespan_ns: tuple[int, int] = self.__get_timespan_ns()

        # compute xsens to aria world alignment
        self.__compute_xsens_to_aria_alignment()

    def get_existing_recordings(self) -> list[RecordingDataProvider]:
        return [
            x
            for x in [
                self.recording_head,
                self.recording_observer,
                self.recording_lwrist,
                self.recording_rwrist,
            ]
            if x is not None
        ]

    def __get_timespan_ns(self, ignore_ns: int = 1e9) -> tuple[int, int]:
        """
        \brief Compute overlapping timeline across all loaded data
        """
        t_start = 0
        t_end = None
        if self.body_dp is not None:
            t0, t1 = self.body_dp.get_global_timespan_us()
            t_start = t0 * 1e3
            t_end = t1 * 1e3

        for rec in self.get_existing_recordings():
            t0, t1 = rec.get_global_timespan_ns()
            t_start = t_start if t_start > t0 else t0
            t_end = t_end if t_end is None or t_end < t1 else t1

        t_start += ignore_ns
        t_end -= ignore_ns
        assert t_start < t_end, f"invalid time span {t_start= }us, {t_end= }us"

        t_start = int(t_start)
        t_end = int(t_end)
        duration = (t_end - t_start) / 1.0e9
        logger.info(f"time span: {t_start= }us {t_end= }us {duration= }s")
        return t_start, t_end

    def get_synced_rgb_videos(self, t_ns_global: int) -> dict[str, any]:
        data = {}
        for rec in [self.recording_head, self.recording_observer]:
            if rec is None and not rec.has_rgb:
                continue

            result = rec.get_rgb_image(t_ns_global, time_domain=TimeDomain.TIME_CODE)
            if abs(result[-1] / 1e6) > 33:  # 33ms
                logger.warning(f"time difference for image query: {result[-1]} ms")
            data[rec.tag] = result
        return data

    def get_all_pointclouds(self) -> dict[str, np.ndarray]:
        data = {}
        for rec in self.get_existing_recordings():
            if not rec.has_pointcloud:
                continue

            if self.view_cached_points:
                data[rec.tag] = rec.get_pointcloud_cached(
                    th_dep=self.th_dep,
                    th_invdep=self.th_invdep,
                    max_point_count=self.max_point_count,
                )
            else:
                data[rec.tag] = rec.get_pointcloud(
                    th_dep=self.th_dep,
                    th_invdep=self.th_invdep,
                    max_point_count=self.max_point_count,
                )
        return data

    def get_all_trajectories(self) -> dict[str, np.ndarray]:
        data = {}
        for rec in self.get_existing_recordings():
            if rec.has_vrs and rec.has_pose:
                data[rec.tag] = rec.sample_trajectory_world_device(
                    sample_fps=self.trajectory_sample_fps
                )
        return data

    def get_synced_poses(self, t_ns_global: int) -> dict[str, any]:
        data = {}
        T_Wd_Hd = None
        for rec in self.get_existing_recordings():
            if rec is None or not rec.has_pose:
                continue

            pose: ClosedLoopTrajectoryPose = None
            tdiff: int = None
            pose, tdiff = rec.get_pose(t_ns_global, time_domain=TimeDomain.TIME_CODE)
            if abs(tdiff / 1e6) > 2:  # 2ms
                logger.warning(f"time difference for pose query {tdiff/1e6} ms")

            data[rec.tag] = pose
            if rec.tag == "recording_head":
                T_Wd_Hd: SE3 = pose.transform_world_device

        if (
            self.body_dp is not None
            and self.recording_head is not None
            and T_Wd_Hd is not None
        ):
            T_Wd_Hx = T_Wd_Hd @ self.T_Hd_Hx(t_ns_global)
            t_us = t_ns_global / 1e3
            skel, skin = self.body_dp.get_posed_skeleton_and_skin(t_us, T_W_Hx=T_Wd_Hx)
            data["xsens"] = skel
            if skin is not None:
                data["momentum"] = skin
        return data

    def __compute_xsens_to_aria_alignment(self) -> None:
        """
        \brief Compute se3 transform from xsens head to aria head
               This function will set self.Ts_Hd_Hx and self.t_ns_align
        """
        if self.recording_head is None or self.body_dp is None:
            self.Ts_Hd_Hx = [SE3.from_matrix(np.eye(4))]
            self.t_ns_align = None
            return
        else:
            logger.info("compute alignment from xsens head to aria headset")
            assert self.body_dp is not None
            assert self.recording_head is not None

        # get synchronized trajectory
        xsens_traj = self.body_dp.get_T_w_h(self.timespan_ns)
        T_Wx_Hx: list[SE3] = xsens_traj[0]
        t_ns: list[int] = xsens_traj[-1]
        T_Wd_Hd: list[SE3] = []
        for t in t_ns:
            pose, _ = self.recording_head.get_pose(t, TimeDomain.TIME_CODE)
            T_Wd_Hd.append(pose.transform_world_device)

        # solve handeye
        handeye = HandEyeSolver(
            stride=self.handeye_stride,
            smooth=self.handeye_smooth,
            skip=self.handeye_skip,
            window=self.handeye_window,
        )
        self.Ts_Hd_Hx: list[SE3] = handeye(
            T_Wa_A=T_Wd_Hd,
            T_Wb_B=T_Wx_Hx,
        )
        if len(self.Ts_Hd_Hx) > 1:
            self.t_ns_align = t_ns[0 :: self.handeye_skip]
        else:
            self.t_ns_align = None

    def T_Hd_Hx(self, t_ns: int) -> SE3:
        if self.t_ns_align is None:
            return self.Ts_Hd_Hx[0]

        if t_ns <= self.t_ns_align[0]:
            return self.Ts_Hd_Hx[0]

        if t_ns >= self.t_ns_align[-1]:
            return self.Ts_Hd_Hx[-1]

        idx = np.searchsorted(self.t_ns_align, t_ns)
        return self.Ts_Hd_Hx[idx]