|
|
|
|
|
|
|
|
|
|
|
|
|
from enum import Enum |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
from loguru import logger |
|
|
|
from nymeria.definitions import Subpaths, VrsFiles |
|
from projectaria_tools.core import data_provider, mps |
|
from projectaria_tools.core.data_provider import VrsDataProvider |
|
from projectaria_tools.core.mps import ( |
|
ClosedLoopTrajectoryPose, |
|
MpsDataPathsProvider, |
|
MpsDataProvider, |
|
) |
|
from projectaria_tools.core.sensor_data import ( |
|
ImageData, |
|
ImageDataRecord, |
|
TimeDomain, |
|
TimeQueryOptions, |
|
) |
|
from projectaria_tools.core.stream_id import StreamId |
|
|
|
|
|
class AriaStream(Enum): |
|
camera_slam_left = "1201-1" |
|
camera_slam_right = "1201-2" |
|
camera_rgb = "214-1" |
|
imu_right = "1202-1" |
|
imu_left = "1202-2" |
|
|
|
|
|
class RecordingPathProvider: |
|
""" |
|
\brief This class will not check of input recording path is valid |
|
""" |
|
|
|
def __init__(self, recording_path: Path): |
|
self.recording_path: Path = recording_path |
|
self.tag: str = recording_path.name |
|
|
|
@property |
|
def data_vrsfile(self) -> Path: |
|
return self.recording_path / VrsFiles.data |
|
|
|
@property |
|
def motion_vrsfile(self) -> Path: |
|
return self.recording_path / VrsFiles.motion |
|
|
|
@property |
|
def mps_path(self) -> MpsDataPathsProvider | None: |
|
mps_path = self.recording_path / Subpaths.mps |
|
if mps_path.is_dir(): |
|
return MpsDataPathsProvider(str(mps_path)) |
|
else: |
|
return None |
|
|
|
@property |
|
def points_npz_cache(self) -> Path: |
|
return self.recording_path / Subpaths.mps_slam / "semidense_points_cache.npz" |
|
|
|
|
|
class RecordingDataProvider(RecordingPathProvider): |
|
def __init__(self, recording_path: Path) -> None: |
|
super().__init__(recording_path) |
|
|
|
self._vrs_dp = None |
|
self._mps_dp = None |
|
if not self.recording_path.is_dir(): |
|
return |
|
|
|
|
|
if self.data_vrsfile.is_file(): |
|
self._vrs_dp = data_provider.create_vrs_data_provider( |
|
str(self.data_vrsfile) |
|
) |
|
elif self.motion_vrsfile.is_file(): |
|
self._vrs_dp = data_provider.create_vrs_data_provider( |
|
str(self.motion_vrsfile) |
|
) |
|
|
|
|
|
if self.mps_path is not None: |
|
self._mps_dp = MpsDataProvider(self.mps_path.get_data_paths()) |
|
|
|
@property |
|
def vrs_dp(self) -> VrsDataProvider | None: |
|
return self._vrs_dp |
|
|
|
@property |
|
def mps_dp(self) -> MpsDataProvider | None: |
|
return self._mps_dp |
|
|
|
def get_global_timespan_ns(self) -> tuple[int, int]: |
|
if self.vrs_dp is None: |
|
raise RuntimeError( |
|
f"require {self.data_vrsfile=} or {self.motion_vrsfile=}" |
|
) |
|
|
|
t_start = self.vrs_dp.get_first_time_ns_all_streams(TimeDomain.TIME_CODE) |
|
t_end = self.vrs_dp.get_last_time_ns_all_streams(TimeDomain.TIME_CODE) |
|
return t_start, t_end |
|
|
|
@property |
|
def has_pointcloud(self) -> bool: |
|
if self.mps_dp is None or not self.mps_dp.has_semidense_point_cloud(): |
|
return False |
|
else: |
|
return True |
|
|
|
def get_pointcloud( |
|
self, |
|
th_invdep: float = 0.0004, |
|
th_dep: float = 0.02, |
|
max_point_count: int = 50_000, |
|
cache_to_npz: bool = False, |
|
) -> np.ndarray: |
|
assert self.has_pointcloud, "recording has no point cloud" |
|
points = self.mps_dp.get_semidense_point_cloud() |
|
|
|
points = mps.utils.filter_points_from_confidence( |
|
raw_points=points, threshold_dep=th_dep, threshold_invdep=th_invdep |
|
) |
|
points = mps.utils.filter_points_from_count( |
|
raw_points=points, max_point_count=max_point_count |
|
) |
|
|
|
points = np.array([x.position_world for x in points]) |
|
|
|
if cache_to_npz: |
|
np.savez( |
|
self.points_npz_cache, |
|
points=points, |
|
threshold_dep=th_dep, |
|
threshold_invdep=th_invdep, |
|
max_point_count=max_point_count, |
|
) |
|
return points |
|
|
|
def get_pointcloud_cached( |
|
self, |
|
th_invdep: float = 0.0004, |
|
th_dep: float = 0.02, |
|
max_point_count: int = 50_000, |
|
) -> np.ndarray: |
|
assert self.has_pointcloud, "recording has no point cloud" |
|
if self.points_npz_cache.is_file(): |
|
logger.info(f"load cached point cloud from {self.points_npz_cache}") |
|
return np.load(self.points_npz_cache)["points"] |
|
|
|
return self.get_pointcloud(cache_to_npz=True) |
|
|
|
@property |
|
def has_vrs(self) -> bool: |
|
return self.vrs_dp is not None |
|
|
|
@property |
|
def has_rgb(self) -> bool: |
|
return self.has_vrs and self.vrs_dp.check_stream_is_active(StreamId("214-1")) |
|
|
|
def get_rgb_image( |
|
self, t_ns: int, time_domain: TimeDomain = TimeDomain.TIME_CODE |
|
) -> tuple[ImageData, ImageDataRecord, int]: |
|
assert self.has_rgb, "recording has no rgb video" |
|
assert time_domain in [ |
|
TimeDomain.DEVICE_TIME, |
|
TimeDomain.TIME_CODE, |
|
], "unsupported time domain" |
|
|
|
if time_domain == TimeDomain.TIME_CODE: |
|
t_ns_device = self.vrs_dp.convert_from_timecode_to_device_time_ns( |
|
timecode_time_ns=t_ns |
|
) |
|
else: |
|
t_ns_device = t_ns |
|
|
|
image_data, image_meta = self.vrs_dp.get_image_data_by_time_ns( |
|
StreamId("214-1"), |
|
time_ns=t_ns_device, |
|
time_domain=TimeDomain.DEVICE_TIME, |
|
time_query_options=TimeQueryOptions.CLOSEST, |
|
) |
|
t_diff = t_ns_device - image_meta.capture_timestamp_ns |
|
|
|
return image_data, image_meta, t_diff |
|
|
|
@property |
|
def has_pose(self) -> bool: |
|
if self.mps_dp is None or not self.mps_dp.has_closed_loop_poses(): |
|
return False |
|
else: |
|
return True |
|
|
|
def get_pose( |
|
self, t_ns: int, time_domain: TimeDomain |
|
) -> tuple[ClosedLoopTrajectoryPose, int]: |
|
t_ns = int(t_ns) |
|
assert self.has_pose, "recording has no closed loop trajectory" |
|
assert time_domain in [ |
|
TimeDomain.DEVICE_TIME, |
|
TimeDomain.TIME_CODE, |
|
], "unsupported time domain" |
|
|
|
if time_domain == TimeDomain.TIME_CODE: |
|
assert self.vrs_dp, "require vrs for time domain mapping" |
|
t_ns_device = self.vrs_dp.convert_from_timecode_to_device_time_ns( |
|
timecode_time_ns=t_ns |
|
) |
|
|
|
else: |
|
t_ns_device = t_ns |
|
|
|
pose = self.mps_dp.get_closed_loop_pose(t_ns_device, TimeQueryOptions.CLOSEST) |
|
t_diff = pose.tracking_timestamp.total_seconds() * 1e9 - t_ns_device |
|
return pose, t_diff |
|
|
|
def sample_trajectory_world_device(self, sample_fps: float = 1) -> np.ndarray: |
|
assert self.has_pose, "recording has no closed loop trajectory" |
|
assert self.has_vrs, "current implementation assume vrs is loaded." |
|
t_start, t_end = self.get_global_timespan_ns() |
|
t_start = self.vrs_dp.convert_from_timecode_to_device_time_ns(t_start) |
|
t_end = self.vrs_dp.convert_from_timecode_to_device_time_ns(t_end) |
|
|
|
dt = int(1e9 / sample_fps) |
|
traj_world_device = [] |
|
for t_ns in range(t_start, t_end, dt): |
|
pose = self.mps_dp.get_closed_loop_pose(t_ns, TimeQueryOptions.CLOSEST) |
|
traj_world_device.append( |
|
pose.transform_world_device.to_matrix().astype(np.float32) |
|
) |
|
|
|
traj_world_device = np.stack(traj_world_device, axis=0) |
|
return traj_world_device |
|
|
|
|
|
def create_recording_data_provider( |
|
recording_path: Path, |
|
) -> RecordingDataProvider | None: |
|
if not recording_path.is_dir(): |
|
return None |
|
|
|
dp = RecordingDataProvider(recording_path) |
|
if dp.vrs_dp is None and dp.mps_dp is None: |
|
return None |
|
else: |
|
return dp |
|
|