Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
multi-class-classification
Languages:
Catalan
Size:
10K - 100K
License:
# Loading script for the TeCla dataset. | |
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
""" | |
_DESCRIPTION = """ | |
Dataset automatically created from Catalan Wikipedia articles and the associated categories. | |
""" | |
_URL = "./" | |
_TRAINING_FILE = "train.json" | |
_DEV_FILE = "dev.json" | |
class ca_wiki_tcConfig(datasets.BuilderConfig): | |
""" Builder config for the CaWikiTC dataset """ | |
def __init__(self, **kwargs): | |
"""BuilderConfig for CaWikiTC. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(ca_wiki_tcConfig, self).__init__(**kwargs) | |
class ca_wiki_tc(datasets.GeneratorBasedBuilder): | |
""" CaWikiTC Dataset """ | |
BUILDER_CONFIGS = [ | |
ca_wiki_tcConfig( | |
name="ca-wiki-tc", | |
version=datasets.Version("1.0.1"), | |
description="CaWikiTC dataset", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.features.ClassLabel | |
(names= | |
[ | |
"Administració", | |
"Aeronàutica", | |
"Agricultura", | |
"Antropologia", | |
"Arqueologia", | |
"Arquitectura", | |
"Art", | |
"Astronomia", | |
"Astronàutica", | |
"Biblioteconomia", | |
"Biotecnologia", | |
"Catàstrofes", | |
"Circ", | |
"Ciència militar", | |
"Ciència-ficció", | |
"Ciències ambientals", | |
"Ciències de la salut", | |
"Ciències polítiques", | |
"Conflictes", | |
"Cronometria", | |
"Cultura popular", | |
"Dansa", | |
"Dret", | |
"Ecologia", | |
"Enginyeria", | |
"Epidèmies", | |
"Esoterisme", | |
"Estris", | |
"Festivals", | |
"Filologia", | |
"Filosofia", | |
"Fiscalitat", | |
"Física", | |
"Geografia", | |
"Geologia", | |
"Gestió", | |
"Heràldica", | |
"Història", | |
"Humor", | |
"Indumentària", | |
"Informàtica", | |
"Jaciments paleontològics", | |
"Jocs", | |
"Lingüística", | |
"Llengües", | |
"Llocs ficticis", | |
"Matemàtiques", | |
"Metodologia", | |
"Mitologia", | |
"Multimèdia", | |
"Museologia", | |
"Nàutica", | |
"Objectes astronòmics", | |
"Pedagogia", | |
"Periodisme", | |
"Protestes", | |
"Pseudociència", | |
"Psicologia", | |
"Química", | |
"Robòtica", | |
"Ràdio", | |
"Seguretat laboral", | |
"Sociologia", | |
"Telecomunicacions", | |
"Televisió", | |
"Teologia", | |
"Ètica", | |
] | |
), | |
} | |
), | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}) | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for id_, article in enumerate(data): | |
text = article["text"] | |
label = article["label"] | |
yield id_, { | |
"text": text, | |
"label": label, | |
} | |