proteinglm commited on
Commit
874fe3a
1 Parent(s): c411401

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md CHANGED
@@ -21,4 +21,87 @@ configs:
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
 
 
 
 
 
 
 
 
 
24
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
24
+ license: apache-2.0
25
+ task_categories:
26
+ - text-classification
27
+ tags:
28
+ - chemistry
29
+ - biology
30
+ - medical
31
+ size_categories:
32
+ - 1K<n<10K
33
  ---
34
+
35
+
36
+ # Dataset Card for Localization Prediction Dataset
37
+
38
+ ### Dataset Summary
39
+
40
+ The task of Protein Subcellular Localization Prediction bears substantial relevance in bioinformatics, owing to its contributions to proteomics research and its potential to augment our comprehension of protein function and disease mechanisms. In this task, the input to the model is an amino acid sequence of a protein, which is transformed into an output comprising a probability distribution over 10 unique subcellular localization categories.
41
+
42
+ ## Dataset Structure
43
+
44
+ ### Data Instances
45
+ For each instance, there is a string representing the protein sequence and an integer label indicating which subcellular position the protein sequence locates at. See the [localization prediction dataset viewer](https://huggingface.co/datasets/Bo1015/localization_prediction/viewer) to explore more examples.
46
+
47
+ ```
48
+ {'seq':'MEHVIDNFDNIDKCLKCGKPIKVVKLKYIKKKIENIPNSHLINFKYCSKCKRENVIENL'
49
+ 'label':6}
50
+ ```
51
+
52
+ The average for the `seq` and the `label` are provided below:
53
+
54
+ | Feature | Mean Count |
55
+ | ---------- | ---------------- |
56
+ | seq | 544 |
57
+ | label (0) | 0.01 |
58
+ | label (1) | 0.10 |
59
+ | label (2) | 0.20 |
60
+ | label (3) | 0.03 |
61
+ | label (4) | 0.07 |
62
+ | label (5) | 0.06 |
63
+ | label (6) | 0.11 |
64
+ | label (7) | 0.34 |
65
+ | label (8) | 0.06 |
66
+ | label (9) | 0.02 |
67
+
68
+
69
+
70
+
71
+ ### Data Fields
72
+
73
+ - `seq`: a string containing the protein sequence
74
+ - `label`: an integer label indicating which subcellular position the protein sequence locates at.
75
+
76
+ ### Data Splits
77
+
78
+ The localization prediction dataset has 2 splits: _train_ and _test_. Below are the statistics of the dataset.
79
+
80
+ | Dataset Split | Number of Instances in Split |
81
+ | ------------- | ------------------------------------------- |
82
+ | Train | 6,622 |
83
+ | Test | 1,842 |
84
+
85
+ ### Source Data
86
+
87
+ #### Initial Data Collection and Normalization
88
+ The dataset applied for this task is derived from Uniprot, meticulously curated by [DeepLoc](https://academic.oup.com/bioinformatics/article/33/21/3387/3931857).
89
+
90
+ ### Licensing Information
91
+
92
+ The dataset is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0).
93
+
94
+ ### Citation
95
+ If you find our work useful, please consider citing the following paper:
96
+
97
+ ```
98
+ @misc{chen2024xtrimopglm,
99
+ title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein},
100
+ author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others},
101
+ year={2024},
102
+ eprint={2401.06199},
103
+ archivePrefix={arXiv},
104
+ primaryClass={cs.CL},
105
+ note={arXiv preprint arXiv:2401.06199}
106
+ }
107
+ ```