Datasets:

License:
File size: 20,699 Bytes
10d5469
 
 
 
 
 
 
 
 
 
 
 
 
4bf4e92
 
 
10d5469
 
 
 
16583e6
4bf4e92
 
 
 
 
 
10d5469
4bf4e92
 
 
 
 
 
 
 
 
10d5469
 
 
4bf4e92
10d5469
4bf4e92
10d5469
 
 
 
 
4bf4e92
 
10d5469
4bf4e92
10d5469
 
 
 
 
 
 
 
 
 
 
 
 
 
4bf4e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
4bf4e92
 
 
 
16583e6
 
4bf4e92
 
 
16583e6
 
4bf4e92
16583e6
 
4bf4e92
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
4bf4e92
 
 
 
 
 
 
 
 
16583e6
4bf4e92
16583e6
 
4bf4e92
16583e6
4bf4e92
16583e6
 
4bf4e92
 
 
 
 
16583e6
 
4bf4e92
16583e6
4bf4e92
 
 
8ac67ec
4bf4e92
 
16583e6
 
4bf4e92
 
 
 
16583e6
4bf4e92
 
 
 
16583e6
4bf4e92
 
 
 
16583e6
4bf4e92
 
 
16583e6
4bf4e92
 
 
 
 
 
 
 
 
 
16583e6
4bf4e92
 
 
16583e6
4bf4e92
16583e6
 
4bf4e92
16583e6
4bf4e92
16583e6
 
4bf4e92
 
16583e6
 
4bf4e92
16583e6
 
4bf4e92
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
4bf4e92
16583e6
 
4bf4e92
16583e6
4bf4e92
16583e6
 
4bf4e92
 
 
 
16583e6
 
4bf4e92
16583e6
 
4bf4e92
 
 
16583e6
4bf4e92
 
16583e6
4bf4e92
 
 
 
37e224f
4bf4e92
 
 
 
37e224f
4bf4e92
 
 
 
37e224f
4bf4e92
 
 
 
 
 
 
 
 
37e224f
4bf4e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e224f
4bf4e92
 
16583e6
10d5469
4bf4e92
 
 
 
10d5469
 
 
4bf4e92
 
 
 
 
 
 
 
10d5469
4bf4e92
 
 
 
 
 
 
10d5469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
10d5469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a15f601
10d5469
 
 
 
 
16583e6
4bf4e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16583e6
4bf4e92
 
 
 
 
 
 
 
 
10d5469
4bf4e92
 
10d5469
4bf4e92
 
 
16583e6
4bf4e92
 
16583e6
4bf4e92
 
 
 
 
 
 
 
16583e6
 
4bf4e92
16583e6
4bf4e92
16583e6
4bf4e92
 
 
 
10d5469
 
 
 
10647af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

############################################################################################################################
# IMPORTS

import numpy as np
import datasets
from datasets import Value
import pickle
import pandas as pd

############################################################################################################################
# GLOBAL VARIABLES

# BibTeX citation
_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2406.04928,
  doi = {10.48550/ARXIV.2406.04928},
  url = {https://arxiv.org/abs/2406.04928},
  author = {Sialelli,  Ghjulia and Peters,  Torben and Wegner,  Jan D. and Schindler,  Konrad},
  keywords = {Computer Vision and Pattern Recognition (cs.CV),  Machine Learning (cs.LG),  Image and Video Processing (eess.IV),  FOS: Computer and information sciences,  FOS: Computer and information sciences,  FOS: Electrical engineering,  electronic engineering,  information engineering,  FOS: Electrical engineering,  electronic engineering,  information engineering},
  title = {AGBD: A Global-scale Biomass Dataset},
  publisher = {arXiv},
  year = {2024},
  copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
}
"""

# Description of the dataset
_DESCRIPTION = """\
This new dataset is a machine-learning ready dataset of high-resolution (10m), multi-modal satellite imagery, paired with AGB reference values from NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# License of the dataset
_LICENSE = "https://creativecommons.org/licenses/by-nc/4.0/"

# Metadata features
feature_dtype = {'s2_num_days': Value('int16'),
                'gedi_num_days': Value('uint16'),
                'lat': Value('float32'),
                'lon': Value('float32'),
                "agbd_se": Value('float32'),
                "elev_lowes": Value('float32'),
                "leaf_off_f": Value('uint8'),
                "pft_class": Value('uint8'),
                "region_cla": Value('uint8'),
                "rh98": Value('float32'),
                "sensitivity": Value('float32'),
                "solar_elev": Value('float32'),
                "urban_prop":Value('uint8')}

# Default input features configuration
default_input_features = {'S2_bands': ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09','B11', 'B12'], 
                            'S2_dates' : False, 'lat_lon': True, 'GEDI_dates': False, 'ALOS': True, 'CH': True, 'LC': True, 
                            'DEM': True, 'topo': False}

# Mapping from Sentinel-2 band to index in the data
s2_bands_idx = {'B01': 0, 'B02': 1, 'B03': 2, 'B04': 3, 'B05': 4, 'B06': 5, 'B07': 6, 'B08': 7, 'B8A': 8, 'B09': 9, 'B11': 10, 'B12': 11}

# Normalization values
norm_values = {
    'ALOS_bands': {
        'HH': {'mean': -10.381429, 'std': 8.561741, 'min': -83.0, 'max': 13.329468, 'p1': -83.0, 'p99': -2.1084213},
        'HV': {'mean': -16.722847, 'std': 8.718428, 'min': -83.0, 'max': 11.688309, 'p1': -83.0, 'p99': -7.563843}},
    'S2_bands': 
        {'B01': {'mean': 0.12478869, 'std': 0.024433358, 'min': 1e-04, 'max': 1.8808, 'p1': 0.0787, 'p99': 0.1944}, 
        'B02': {'mean': 0.13480005, 'std': 0.02822557, 'min': 1e-04, 'max': 2.1776, 'p1': 0.0925, 'p99': 0.2214}, 
        'B03': {'mean': 0.16031432, 'std': 0.032037303, 'min': 1e-04, 'max': 2.12, 'p1': 0.1035, 'p99': 0.2556}, 
        'B04': {'mean': 0.1532097, 'std': 0.038628064, 'min': 1e-04, 'max': 2.0032, 'p1': 0.1023, 'p99': 0.2816}, 
        'B05': {'mean': 0.20312776, 'std': 0.04205057, 'min': 0.0422, 'max': 1.7502, 'p1': 0.1178, 'p99': 0.3189}, 
        'B06': {'mean': 0.32636437, 'std': 0.07139242, 'min': 0.0502, 'max': 1.7245, 'p1': 0.1632, 'p99': 0.519}, 
        'B07': {'mean': 0.36605212, 'std': 0.08555025, 'min': 0.0616, 'max': 1.7149, 'p1': 0.1775, 'p99': 0.6075}, 
        'B08': {'mean': 0.3811653, 'std': 0.092815965, 'min': 1e-04, 'max': 1.7488, 'p1': 0.1691, 'p99': 0.646}, 
        'B8A': {'mean': 0.3910436, 'std': 0.0896364, 'min': 0.055, 'max': 1.688, 'p1': 0.187, 'p99': 0.6385}, 
        'B09': {'mean': 0.3910644, 'std': 0.0836445, 'min': 0.0012, 'max': 1.7915, 'p1': 0.2123, 'p99': 0.6238}, 
        'B11': {'mean': 0.2917373, 'std': 0.07472579, 'min': 0.0953, 'max': 1.648, 'p1': 0.1334, 'p99': 0.4827}, 
        'B12': {'mean': 0.21169408, 'std': 0.05880649, 'min': 0.0975, 'max': 1.6775, 'p1': 0.1149, 'p99': 0.3869}},
    'CH': {
        'ch': {'mean': 9.736144, 'std': 9.493601, 'min': 0.0, 'max': 61.0, 'p1': 0.0, 'p99': 38.0},
        'std': {'mean': 7.9882116, 'std': 4.549494, 'min': 0.0, 'max': 254.0, 'p1': 0.0, 'p99': 18.0}},
    'DEM': {
        'mean': 604.63727, 'std': 588.02094, 'min': -82.0, 'max': 5205.0, 'p1': 4.0, 'p99': 2297.0},
    'Sentinel_metadata': {
        'S2_vegetation_score': {'mean': 89.168724, 'std': 17.17321, 'min': 20.0, 'max': 100.0, 'p1': 29.0, 'p99': 100.0},
        'S2_date': {'mean': 299.1638, 'std': 192.87402, 'min': -165.0, 'max': 623.0, 'p1': -105.0, 'p99': 602.0}}, 
    'GEDI': {
        'agbd': {'mean': 66.97266, 'std': 98.66588, 'min': 0.0, 'max': 499.99985, 'p1': 0.0, 'p99': 429.7605},
        'agbd_se': {'mean': 8.360701, 'std': 4.211524, 'min': 2.981795, 'max': 25.041483, 'p1': 2.9819136, 'p99': 17.13577},
        'rh98': {'mean': 12.074685, 'std': 10.276359, 'min': -1.1200076, 'max': 111.990005, 'p1': 2.3599916, 'p99': 41.96},
        'date': {'mean': 361.7431, 'std': 175.37294, 'min': 0.0, 'max': 624.0, 'p1': 5.0, 'p99': 619.0}}
    }

# Define the nodata values for each data source
NODATAVALS = {'S2_bands' : 0, 'CH': 255, 'ALOS_bands': -9999.0, 'DEM': -9999, 'LC': 255}

# Reference biomes, and derived metrics
REF_BIOMES = {20: 'Shrubs', 30: 'Herbaceous vegetation', 40: 'Cultivated', 90: 'Herbaceous wetland', 111: 'Closed-ENL', 112: 'Closed-EBL', 114: 'Closed-DBL', 115: 'Closed-mixed', 116: 'Closed-other', 121: 'Open-ENL', 122: 'Open-EBL', 124: 'Open-DBL', 125: 'Open-mixed', 126: 'Open-other'}
_biome_values_mapping = {v: i for i, v in enumerate(REF_BIOMES.keys())}
_ref_biome_values = [v for v in REF_BIOMES.keys()]

############################################################################################################################
# Helper functions

def normalize_data(data, norm_values, norm_strat, nodata_value = None) :
    """
    Normalize the data, according to various strategies:
    - mean_std: subtract the mean and divide by the standard deviation
    - pct: subtract the 1st percentile and divide by the 99th percentile
    - min_max: subtract the minimum and divide by the maximum

    Args:
    - data (np.array): the data to normalize
    - norm_values (dict): the normalization values
    - norm_strat (str): the normalization strategy

    Returns:
    - normalized_data (np.array): the normalized data
    """

    if norm_strat == 'mean_std' :
        mean, std = norm_values['mean'], norm_values['std']
        if nodata_value is not None :
            data = np.where(data == nodata_value, 0, (data - mean) / std)
        else : data = (data - mean) / std

    elif norm_strat == 'pct' :
        p1, p99 = norm_values['p1'], norm_values['p99']
        if nodata_value is not None :
            data = np.where(data == nodata_value, 0, (data - p1) / (p99 - p1))
        else :
            data = (data - p1) / (p99 - p1)
        data = np.clip(data, 0, 1)

    elif norm_strat == 'min_max' :
        min_val, max_val = norm_values['min'], norm_values['max']
        if nodata_value is not None :
            data = np.where(data == nodata_value, 0, (data - min_val) / (max_val - min_val))
        else:
            data = (data - min_val) / (max_val - min_val)
    
    else: 
        raise ValueError(f'Normalization strategy `{norm_strat}` is not valid.')

    return data


def normalize_bands(bands_data, norm_values, order, norm_strat, nodata_value = None) :
    """
    This function normalizes the bands data using the normalization values and strategy.

    Args:
    - bands_data (np.array): the bands data to normalize
    - norm_values (dict): the normalization values
    - order (list): the order of the bands
    - norm_strat (str): the normalization strategy
    - nodata_value (int/float): the nodata value

    Returns:
    - bands_data (np.array): the normalized bands data
    """
    
    for i, band in enumerate(order) :
        band_norm = norm_values[band]
        bands_data[i, :, :] = normalize_data(bands_data[i, :, :], band_norm, norm_strat, nodata_value)
    
    return bands_data


def one_hot(x) :
    one_hot = np.zeros(len(_biome_values_mapping))
    one_hot[_biome_values_mapping.get(x, 0)] = 1
    return one_hot

def encode_biome(lc, encode_strat, embeddings = None) :
    """
    This function encodes the land cover data using different strategies: 1) sin/cosine encoding, 
    2) cat2vec embeddings, 3) one-hot encoding.

    Args:
    - lc (np.array): the land cover data
    - encode_strat (str): the encoding strategy
    - embeddings (dict): the cat2vec embeddings

    Returns:
    - encoded_lc (np.array): the encoded land cover data
    """

    if encode_strat == 'sin_cos' :
        # Encode the LC classes with sin/cosine values and scale the data to [0,1]
        lc_cos = np.where(lc == NODATAVALS['LC'], 0, (np.cos(2 * np.pi * lc / 201) + 1) / 2)
        lc_sin = np.where(lc == NODATAVALS['LC'], 0, (np.sin(2 * np.pi * lc / 201) + 1) / 2)
        return np.stack([lc_cos, lc_sin], axis = -1).astype(np.float32)
    
    elif encode_strat == 'cat2vec' :
        # Embed the LC classes using the cat2vec embeddings
        lc_cat2vec = np.vectorize(lambda x: embeddings.get(x, embeddings.get(0)), signature = '()->(n)')(lc)
        return lc_cat2vec.astype(np.float32)

    elif encode_strat == 'onehot' :
        lc_onehot = np.vectorize(one_hot, signature = '() -> (n)')(lc).astype(np.float32)
        return lc_onehot

    else: raise ValueError(f'Encoding strategy `{encode_strat}` is not valid.')


def compute_num_features(input_features, encode_strat) :
    """
    This function computes the number of features that will be used in the model.

    Args:
    - input_features (dict): the input features configuration
    - encode_strat (str): the encoding strategy

    Returns:
    - num_features (int): the number of features
    """

    num_features = len(input_features['S2_bands'])
    if input_features['S2_dates'] : num_features += 3
    if input_features['lat_lon'] : num_features += 4
    if input_features['GEDI_dates'] : num_features += 3
    if input_features['ALOS'] : num_features += 2
    if input_features['CH'] : num_features += 2
    if input_features['LC'] :
        num_features += 1
        if encode_strat == 'sin_cos' : num_features += 2
        elif encode_strat == 'cat2vec' : num_features += 5
        elif encode_strat == 'onehot' : num_features += len(REF_BIOMES)
    if input_features['DEM'] : num_features += 1
    if input_features['topo'] : num_features += 3

    return num_features


def concatenate_features(patch, lc_patch, input_features, encode_strat) :
    """
    This function concatenates the features that the user requested.

    Args:
    - patch (np.array): the patch data
    - lc_patch (np.array): the land cover data
    - input_features (dict): the input features configuration
    - encode_strat (str): the encoding strategy

    Returns:
    - out_patch (np.array): the concatenated features
    """

    # Compute the number of features
    num_features = compute_num_features(input_features, encode_strat)
    out_patch = np.zeros((num_features, patch.shape[1], patch.shape[2]), dtype = np.float32)

    # Concatenate the features
    current_idx = 0

    # Sentinel-2 bands
    s2_indices = [s2_bands_idx[band] for band in input_features['S2_bands']]
    out_patch[: current_idx + len(s2_indices)] = patch[s2_indices]
    current_idx += len(s2_indices)
    
    # S2 dates
    if input_features['S2_dates'] : 
        out_patch[current_idx : current_idx + 3] = patch[12:15]
        current_idx += 3
    
    # Lat/Lon
    if input_features['lat_lon'] : 
        out_patch[current_idx : current_idx + 4] = patch[15:19]
        current_idx += 4
    
    # GEDI dates
    if input_features['GEDI_dates'] :
        out_patch[current_idx : current_idx + 3] = patch[19:22]
        current_idx += 3

    # ALOS bands
    if input_features['ALOS'] :
        out_patch[current_idx : current_idx + 2] = patch[22:24]
        current_idx += 2
    
    # CH bands
    if input_features['CH'] :
        out_patch[current_idx] = patch[24]
        out_patch[current_idx + 1] = patch[25]
        current_idx += 2
    
    # LC data
    if input_features['LC'] :

        # LC encoding
        if encode_strat == 'sin_cos' :
            out_patch[current_idx : current_idx + 2] = lc_patch
            current_idx += 2
        elif encode_strat == 'cat2vec' :
            out_patch[current_idx : current_idx + 5] = lc_patch
            current_idx += 5
        elif encode_strat == 'onehot' :
            out_patch[current_idx : current_idx + len(REF_BIOMES)] = lc_patch
            current_idx += len(REF_BIOMES)
        elif encode_strat == 'none' : 
            out_patch[current_idx] = lc_patch
            current_idx += 1
        
        # LC probability
        out_patch[current_idx] = patch[27]
        current_idx += 1

    # Topographic data
    if input_features['topo'] : 
        out_patch[current_idx : current_idx + 3] = patch[28:31]
        current_idx += 3

    # DEM
    if input_features['DEM'] :
        out_patch[current_idx] = patch[31]
        current_idx += 1

    return out_patch

#########################################################################################################################
# DATASET CLASS DEFINITION

class NewDataset(datasets.GeneratorBasedBuilder):
    """DatasetBuilder for AGBD dataset."""
    def __init__(self, *args, input_features = default_input_features, additional_features = [], norm_strat = 'pct', 
                encode_strat = 'sin_cos', patch_size = 15, **kwargs):
        
        self.inner_dataset_kwargs = kwargs
        self._is_streaming = False
        self.patch_size = patch_size

        assert norm_strat in ['mean_std', 'pct', 'none'], f'Normalization strategy `{norm_strat}` is not valid.'
        self.norm_strat = norm_strat
        
        assert encode_strat in ['sin_cos', 'cat2vec', 'onehot', 'none'], f'Encoding strategy `{encode_strat}` is not valid.'
        self.encode_strat = encode_strat
        
        self.input_features = input_features
        self.additional_features = additional_features

        if self.encode_strat == 'cat2vec' :
            embeddings = pd.read_csv("embeddings_train.csv")
            embeddings = dict([(v,np.array([a,b,c,d,e])) for v, a,b,c,d,e in zip(embeddings.mapping, embeddings.dim0, embeddings.dim1, embeddings.dim2, embeddings.dim3, embeddings.dim4)])
            self.embeddings = embeddings
        else: self.embeddings = None

        super().__init__(*args, **kwargs)

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="default", version=VERSION, description="Normalized data"),
        datasets.BuilderConfig(name="unnormalized", version=VERSION, description="Unnormalized data"),
    ]

    DEFAULT_CONFIG_NAME = "default"

    def as_streaming_dataset(self, split=None, base_path=None):
        self._is_streaming = True
        return super().as_streaming_dataset(split=split, base_path=base_path)

    def _info(self):

        all_features = {
            'input': datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value('float32')))),
            'label': Value('float32')
        }
        for feat in self.additional_features:
            all_features[feat] = feature_dtype[feat]
        features = datasets.Features(all_features)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        self.original_dataset = datasets.load_dataset("prs-eth/AGBD_raw", streaming=self._is_streaming)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train"}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"split": "validation"}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test"}),
        ]

    def _generate_examples(self, split):
        for i, d in enumerate(self.original_dataset[split]):

            patch = np.asarray(d["input"])

            # ------------------------------------------------------------------------------------------------
            # Process the data that needs to be processed
            
            # Structure of the d["input"] data:
            # - 12 x Sentinel-2 bands
            # - 3 x S2 dates bands (s2_num_days, s2_doy_cos, s2_doy_sin)
            # - 4 x lat/lon (lat_cos, lat_sin, lon_cos, lon_sin)
            # - 3 x GEDI dates bands (gedi_num_days, gedi_doy_cos, gedi_doy_sin)
            # - 2 x ALOS bands (HH, HV)
            # - 2 x CH bands (ch, std)
            # - 2 x LC bands (lc encoding, lc_prob)
            # - 4 x DEM bands (slope, aspect_cos, aspect_sin, dem)

            if self.norm_strat != 'none' :

                # Normalize S2 bands
                patch[:12] = normalize_bands(patch[:12], norm_values['S2_bands'], ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09','B11', 'B12'], self.norm_strat, NODATAVALS['S2_bands'])

                # Normalize s2_num_days
                patch[12] = normalize_data(patch[12], norm_values['Sentinel_metadata']['S2_date'], 'min_max' if self.norm_strat == 'pct' else self.norm_strat)

                # Normalize gedi_num_days
                patch[19] = normalize_data(patch[19], norm_values['GEDI']['date'], 'min_max' if self.norm_strat == 'pct' else self.norm_strat)
                
                # Normalize ALOS bands
                patch[22:24] = normalize_bands(patch[22:24], norm_values['ALOS_bands'], ['HH', 'HV'], self.norm_strat, NODATAVALS['ALOS_bands'])
                
                # Normalize CH bands
                patch[24] = normalize_data(patch[24], norm_values['CH']['ch'], self.norm_strat, NODATAVALS['CH'])
                patch[25] = normalize_data(patch[25], norm_values['CH']['std'], self.norm_strat, NODATAVALS['CH'])

                # Normalize DEM bands
                patch[31] = normalize_data(patch[31], norm_values['DEM'], self.norm_strat, NODATAVALS['DEM'])

            # Encode LC data
            if self.encode_strat != 'none' : lc_patch = encode_biome(patch[26], self.encode_strat, self.embeddings).swapaxes(-1,0)
            else: lc_patch = patch[26]

            # Put lc_prob in [0,1] range
            patch[27] = patch[27] / 100

            # ------------------------------------------------------------------------------------------------
            # Concatenate the features that the user requested

            out_patch = concatenate_features(patch, lc_patch, self.input_features, self.encode_strat)

            # ------------------------------------------------------------------------------------------------

            # Crop to the patch size
            start_x = (patch.shape[1] - self.patch_size) // 2
            start_y = (patch.shape[2] - self.patch_size) // 2
            out_patch = out_patch[:, start_x : start_x + self.patch_size, start_y : start_y + self.patch_size]

            # ------------------------------------------------------------------------------------------------

            # Create the data dictionary
            data = {'input': out_patch, 'label': d["label"]}

            # Add the additional features
            for feat in self.additional_features:
                data[feat] = d["metadata"][feat]

            yield i, data