--- # pretty_name: "" # Example: "MS MARCO Terrier Index" tags: - pyterrier - pyterrier-artifact - pyterrier-artifact.sparse_index - pyterrier-artifact.sparse_index.terrier task_categories: - text-retrieval viewer: false --- # webis-touche2020.terrier ## Description Terrier index for Touche2020 ## Usage ```python # Load the artifact import pyterrier as pt index = pt.Artifact.from_hf('pyterrier/webis-touche2020.terrier') index.bm25() ``` ## Benchmarks | name | nDCG@10 | R@1000 | |:-------|----------:|---------:| | bm25 | 0.594 | 0.7307 | | dph | 0.6756 | 0.7244 | ## Reproduction ```python import pyterrier as pt from tqdm import tqdm import ir_datasets dataset = ir_datasets.load('beir/webis-touche2020/v2') meta_docno_len = dataset.metadata()['docs']['fields']['doc_id']['max_len'] indexer = pt.IterDictIndexer("./webis-touche2020/v2.terrier", meta={'docno': meta_docno_len, 'text': 4096}) docs = ({'docno': d.doc_id, 'text': '{title}\n{text}'.format(**d._asdict())} for d in tqdm(dataset.docs)) indexer.index(docs) ``` ## Metadata ``` { "type": "sparse_index", "format": "terrier", "package_hint": "python-terrier" } ```