File size: 4,290 Bytes
6a5e475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322a677
 
 
eb1d4aa
44dd507
eb1d4aa
 
6a5e475
 
 
 
 
 
 
 
 
 
 
 
f1f0a39
 
6a5e475
 
f1f0a39
 
 
 
 
 
 
 
 
 
 
6a5e475
 
 
 
 
 
 
cc9ae4a
44dd507
 
6a5e475
 
 
 
 
89f5571
6a5e475
 
 
 
 
 
 
 
 
a9a26d9
 
b9b1542
6a5e475
484f2ea
9e6d05a
484f2ea
9e6d05a
6a5e475
7b9250e
 
 
a9a26d9
f1f0a39
 
 
7b9250e
6a5e475
a9a26d9
f1f0a39
 
 
 
 
 
 
a9a26d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# coding=utf-8
# Source: https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py

"""ELRC-Medical-V2 : European parallel corpus for healthcare machine translation"""

import os
import csv
import datasets
from tqdm import tqdm

logger = datasets.logging.get_logger(__name__)

_CITATION = """
@inproceedings{losch-etal-2018-european,
    title = "European Language Resource Coordination: Collecting Language Resources for Public Sector Multilingual Information Management",
    author = {L{\"o}sch, Andrea  and
      Mapelli, Val{\'e}rie  and
      Piperidis, Stelios  and
      Vasi{\c{l}}jevs, Andrejs  and
      Smal, Lilli  and
      Declerck, Thierry  and
      Schnur, Eileen  and
      Choukri, Khalid  and
      van Genabith, Josef},
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L18-1213",
}
"""

_LANGUAGE_PAIRS = ["en-" + lang for lang in ["bg", "cs", "da", "de", "el", "es", "et", "fi", "fr", "ga", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv"]]

_LICENSE = """
This work is licensed under a <a rel="license" href="https://elrc-share.eu/static/metashare/licences/CC-BY-4.0.pdf">Attribution 4.0 International (CC BY 4.0) License</a>.
"""

# _URLS = {
#     lang : "https://huggingface.co/datasets/qanastek/ELRC-Medical-V2/raw/main/csv/" + lang + ".csv" for lang in _LANGUAGE_PAIRS
# }

_URL = "https://huggingface.co/datasets/qanastek/ELRC-Medical-V2/resolve/main/ELRC-Medical-V2.zip"
# _URL = "https://raw.githubusercontent.com/qanastek/ELRC-Medical-V2/main/csv_corpus/"

_DESCRIPTION = "No description"

class ELRC_Medical_V2(datasets.GeneratorBasedBuilder):
    """ELRC-Medical-V2 dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=name, version=datasets.Version("2.0.0"), description="The ELRC-Medical-V2 corpora") for name in _LANGUAGE_PAIRS
    ]

    DEFAULT_CONFIG_NAME = "en-fr"

    def _info(self):
        src, target = self.config.name.split("-")
        pair = (src, target)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"translation": datasets.features.Translation(languages=pair)}
            ),
            supervised_keys=(src, target),
            # features=datasets.Features({
            #     "doc_id": datasets.Value("int32"),
            #     "lang": datasets.Value("string"),
            #     "source_text": datasets.Value("string"),
            #     "target_text": datasets.Value("string"),
            # }),
            # supervised_keys=None,
            homepage="https://github.com/qanastek/ELRC-Medical-V2/",
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):

        # Download the CSV
        data_dir = dl_manager.download_and_extract(_URL)
        # data_dir = dl_manager.download(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir + "/" + self.config.name + ".csv",
                    "split": "train",
                }
            ),
        ]

    def _generate_examples(self, filepath, split):

        logger.info("⏳ Generating examples from = %s", filepath)

        key_ = 0

        with open(filepath, encoding="utf-8") as f:

            for id_, row in enumerate(csv.reader(f, delimiter=',')):

                if id_ == 0:
                    continue

                # Get langue pair
                src, target = str(row[1]).split("-")

                yield key_, {
                    "translation": {
                        src: str(row[2]).strip(),
                        target: str(row[3]).strip(),
                    },
                }

                # yield key_, {
                #     "doc_id": int(row[0]),
                #     "lang": str(row[1]),
                #     "source_text": str(row[2]),
                #     "target_text": str(row[3])
                # }

                key_ += 1