File size: 9,035 Bytes
5085fc1
 
 
 
 
 
7f5633e
5085fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5633e
 
5085fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cd2f98
5085fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
annotations_creators:
- machine-generated
- expert-generated
language_creators:
- found
language:
- en
- bg
- cs
- da
- de
- el
- es
- et
- fi
- fr
- ga
- hr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sk
- sl
- sv
multilinguality:
- multilingual
pretty_name: ELRC-Medical-V2
size_categories:
- 100K<n<1M
source_datasets:
- extended
task_categories:
- translation
task_ids:
- translation
---

# ELRC-Medical-V2 : European parallel corpus for healthcare machine translation

## Table of Contents
- [Dataset Card for [Needs More Information]](#dataset-card-for-needs-more-information)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://live.european-language-grid.eu/catalogue/project/2209
- **Repository:** https://github.com/qanastek/ELRC-Medical-V2/
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Yanis Labrak](mailto:[email protected])






### Dataset Summary

`ELRC-Medical-V2` is a parallel corpus for neural machine translation funded by the [European Commission](http://www.lr-coordination.eu/) and coordinated by the [German Research Center for Artificial Intelligence](https://www.dfki.de/web).  

### Supported Tasks and Leaderboards

`translation`: The dataset can be used to train a model for translation.

### Languages

In our case, the corpora consists of a pair of source and target sentences for 23 differents languages from the European Union (EU) with as source language in each cases english (EN).

**List of languages :** `Bulgarian (bg)`,`Czech (cs)`,`Danish (da)`,`German (de)`,`Greek (el)`,`Spanish (es)`,`Estonian (et)`,`Finnish (fi)`,`French (fr)`,`Irish (ga)`,`Croatian (hr)`,`Hungarian (hu)`,`Italian (it)`,`Lithuanian (lt)`,`Latvian (lv)`,`Maltese (mt)`,`Dutch (nl)`,`Polish (pl)`,`Portuguese (pt)`,`Romanian (ro)`,`Slovak (sk)`,`Slovenian (sl)`,`Swedish (sv)`.

## Load the dataset with HuggingFace

```python
from datasets import load_dataset

NAME = "qanastek/ELRC-Medical-V2"

dataset = load_dataset(NAME, use_auth_token=True)
print(dataset)

dataset_train = load_dataset(NAME, "en-es", split='train[:90%]')
dataset_test = load_dataset(NAME, "en-es", split='train[10%:]')
print(dataset_train)
print(dataset_train[0])
print(dataset_test)
```

## Dataset Structure

### Data Instances

```plain
id,lang,source_text,target_text
1,en-bg,"TOC \o ""1-3"" \h \z \u Introduction 3","TOC \o ""1-3"" \h \z \u Въведение 3"
2,en-bg,The international humanitarian law and its principles are often not respected.,Международното хуманитарно право и неговите принципи често не се зачитат.
3,en-bg,"At policy level, progress was made on several important initiatives.",На равнище политики напредък е постигнат по няколко важни инициативи.
```

### Data Fields

**id** : The document identifier of type `Integer`.

**lang** : The pair of source and target language of type `String`.

**source_text** : The source text of type `String`.

**target_text** : The target text of type `String`.

### Data Splits

| Lang   |   # Docs  |   Avg. # Source Tokens |   Avg. # Target Tokens |
|--------|-----------|------------------------|------------------------|
| bg     |    13 149 |                     23 |                     24 |
| cs     |    13 160 |                     23 |                     21 |
| da     |    13 242 |                     23 |                     22 |
| de     |    13 291 |                     23 |                     22 |
| el     |    13 091 |                     23 |                     26 |
| es     |    13 195 |                     23 |                     28 |
| et     |    13 016 |                     23 |                     17 |
| fi     |    12 942 |                     23 |                     16 |
| fr     |    13 149 |                     23 |                     28 |
| ga     |       412 |                     12 |                     12 |
| hr     |    12 836 |                     23 |                     21 |
| hu     |    13 025 |                     23 |                     21 |
| it     |    13 059 |                     23 |                     25 |
| lt     |    12 580 |                     23 |                     18 |
| lv     |    13 044 |                     23 |                     19 |
| mt     |     3 093 |                     16 |                     14 |
| nl     |    13 191 |                     23 |                     25 |
| pl     |    12 761 |                     23 |                     22 |
| pt     |    13 148 |                     23 |                     26 |
| ro     |    13 163 |                     23 |                     25 |
| sk     |    12 926 |                     23 |                     20 |
| sl     |    13 208 |                     23 |                     21 |
| sv     |    13 099 |                     23 |                     21 |
|||||
| Total  |    277 780 |                  22.21 |                  21.47 |

## Dataset Creation

### Curation Rationale

For details, check the corresponding [pages](https://elrc-share.eu/repository/search/?q=mfsp%3A87ef9e5e8ac411ea913100155d026706e19a1a9f908b463c944490c36ba2f454&page=3).

### Source Data

#### Initial Data Collection and Normalization

The acquisition of bilingual data (from multilingual websites), normalization, cleaning, deduplication and identification of parallel documents have been done by [ILSP-FC tool](http://nlp.ilsp.gr/redmine/projects/ilsp-fc/wiki/Introduction). [Maligna aligner](https://github.com/loomchild/maligna) was used for alignment of segments. Merging/filtering of segment pairs has also been applied.

#### Who are the source language producers?

Every data of this corpora as been uploaded by [Vassilis Papavassiliou](mailto:[email protected]) on [ELRC-Share](https://elrc-share.eu/repository/browse/bilingual-corpus-from-the-publications-office-of-the-eu-on-the-medical-domain-v2-en-fr/6b31b32e8ac411ea913100155d0267061547d9b3ec284584af19a2953baa8937/).

### Personal and Sensitive Information

The corpora is free of personal or sensitive information.

## Considerations for Using the Data

### Other Known Limitations

The nature of the task introduce a variability in the quality of the target translations.

## Additional Information

### Dataset Curators

__ELRC-Medical-V2__: Labrak Yanis, Dufour Richard

__Bilingual corpus from the Publications Office of the EU on the medical domain v.2 (EN-XX) Corpus__: [Vassilis Papavassiliou](mailto:[email protected]) and [others](https://live.european-language-grid.eu/catalogue/project/2209).

### Licensing Information

<a rel="license" href="https://elrc-share.eu/static/metashare/licences/CC-BY-4.0.pdf"><img alt="Attribution 4.0 International (CC BY 4.0) License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://elrc-share.eu/static/metashare/licences/CC-BY-4.0.pdf">Attribution 4.0 International (CC BY 4.0) License</a>.

### Citation Information

Please cite the following paper when using this model.

```latex
@inproceedings{losch-etal-2018-european,
    title = European Language Resource Coordination: Collecting Language Resources for Public Sector Multilingual Information Management,
    author = {
      L'osch, Andrea  and
      Mapelli, Valérie  and
      Piperidis, Stelios  and
      Vasiljevs, Andrejs  and
      Smal, Lilli  and
      Declerck, Thierry  and
      Schnur, Eileen  and
      Choukri, Khalid  and
      van Genabith, Josef
    },
    booktitle = Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018),
    month = may,
    year = 2018,
    address = Miyazaki, Japan,
    publisher = European Language Resources Association (ELRA),
    url = https://aclanthology.org/L18-1213,
}
```