--- dataset_info: - config_name: pypi-downloads features: - name: day dtype: date32 - name: num_downloads dtype: int64 splits: - name: train num_bytes: 18804 num_examples: 1567 download_size: 14524 dataset_size: 18804 - config_name: stargazers features: - name: starred_at dtype: timestamp[s, tz=UTC] - name: user dtype: string splits: - name: train num_bytes: 192240 num_examples: 9005 download_size: 188639 dataset_size: 192240 configs: - config_name: pypi-downloads data_files: - split: train path: pypi-downloads/train-* - config_name: stargazers data_files: - split: train path: stargazers/train-* --- ## Stars ```python import requests from datetime import datetime from datasets import Dataset import pyarrow as pa import os def get_stargazers(owner, repo, token): # Initialize the count and the page number page = 1 stargazers = [] while True: # Construct the URL for the stargazers with pagination stargazers_url = f"https://api.github.com/repos/{owner}/{repo}/stargazers?page={page}&per_page=100" # Send the request to GitHub API with appropriate headers headers = {"Accept": "application/vnd.github.v3.star+json", "Authorization": "token " + token} response = requests.get(stargazers_url, headers=headers) if response.status_code != 200: raise Exception(f"Failed to fetch stargazers with status code {response.status_code}: {response.text}") stargazers_page = response.json() if not stargazers_page: # Exit the loop if there are no more stargazers to process break stargazers.extend(stargazers_page) page += 1 # Move to the next page return stargazers token = os.environ.get("GITHUB_PAT") stargazers = get_stargazers("huggingface", "trl", token) stargazers = {key: [stargazer[key] for stargazer in stargazers] for key in stargazers[0].keys()} dataset = Dataset.from_dict(stargazers) def clean(example): starred_at = datetime.strptime(example["starred_at"], "%Y-%m-%dT%H:%M:%SZ") starred_at = pa.scalar(starred_at, type=pa.timestamp("s", tz="UTC")) return {"starred_at": starred_at, "user": example["user"]["login"]} dataset = dataset.map(clean, remove_columns=dataset.column_names) dataset.push_to_hub("qgallouedec/trl-metrics", config_name="stargazers") ``` ## Pypi downloads ```python from datasets import Dataset from google.cloud import bigquery import os os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "propane-tree-432413-4c3e2b5e6b3c.json" # Initialize a BigQuery client client = bigquery.Client() # Define your query query = """ #standardSQL WITH daily_downloads AS ( SELECT DATE(timestamp) AS day, COUNT(*) AS num_downloads FROM `bigquery-public-data.pypi.file_downloads` WHERE file.project = 'trl' -- Filter for the last 12 months AND DATE(timestamp) BETWEEN DATE_SUB(CURRENT_DATE(), INTERVAL 54 MONTH) AND CURRENT_DATE() GROUP BY day ) SELECT day, num_downloads FROM daily_downloads ORDER BY day DESC """ # Execute the query query_job = client.query(query) # Fetch the results results = query_job.result() # Convert the results to a pandas DataFrame and then to a Dataset df = results.to_dataframe() dataset = Dataset.from_pandas(df) dataset.push_to_hub("qgallouedec/trl-metrics", config_name="pypi-downloads") ```