Datasets:
License:
File size: 6,018 Bytes
7661f93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
from pathlib import Path
import numpy as np
from scipy.io import wavfile
import torch
from tqdm import tqdm
from typing import List
from project_settings import project_path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--call_monitor_examples_wav_dir",
default=(project_path / "data/call_monitor_examples_wav/id-ID").as_posix(),
type=str
)
parser.add_argument(
"--output_dir",
default=(project_path / "data/voice_test_examples").as_posix(),
type=str
)
parser.add_argument("--n_samples", default=7, type=int)
args = parser.parse_args()
return args
def save_media(output_dir: Path, language: str, category: str, call_id: str,
early_media: np.ndarray, active_media: np.ndarray = None,
sample_rate: int = 8000):
early_media_filename = output_dir / "{}/{}/early_media_{}.wav".format(language, category, call_id)
active_media_filename = output_dir / "{}/{}/active_media_{}.wav".format(language, category, call_id)
early_media_filename.parent.mkdir(parents=True, exist_ok=True)
wavfile.write(early_media_filename.as_posix(), sample_rate, early_media)
if active_media is not None:
active_media_filename.parent.mkdir(parents=True, exist_ok=True)
wavfile.write(active_media_filename.as_posix(), sample_rate, active_media)
def main():
args = get_args()
call_monitor_examples_wav_dir = Path(args.call_monitor_examples_wav_dir)
output_dir = Path(args.output_dir)
counter = defaultdict(int)
metadata_file = call_monitor_examples_wav_dir / "metadata.json"
with open(metadata_file.as_posix(), "r", encoding="utf-8") as f:
metadata = json.load(f)
for meta in metadata:
filename = meta["filename"]
early_media_label = meta["early_media_label"]
early_media_ts = meta["early_media_ts"]
on_answer_label = meta["on_answer_label"]
on_answer_ts = meta["on_answer_ts"]
filename = call_monitor_examples_wav_dir / filename
call_id = filename.stem
language = filename.parts[-2]
sample_rate, signal = wavfile.read(filename.as_posix())
if on_answer_ts is None:
early_media = signal
active_media = None
else:
early_media_n_samples = int(on_answer_ts / 1000 * sample_rate)
early_media = signal[:early_media_n_samples]
active_media = signal[early_media_n_samples:]
append_length = 16000 * 15
if len(active_media) < 16000:
multiple = append_length / len(active_media)
active_media_ = [active_media] + [active_media[-16000:]] * int(multiple)
else:
active_media_ = [active_media] + [active_media[-16000:]] * 15
active_media = np.concatenate(active_media_, axis=0)
category = "other"
if on_answer_label in ("voicemail",):
category = "01"
if counter[category] > args.n_samples:
continue
counter[category] += 1
save_media(
output_dir=output_dir,
language=language,
category=category,
call_id=call_id,
early_media=early_media,
active_media=active_media,
sample_rate=sample_rate,
)
if on_answer_label in ("mute", "white_noise"):
category = "03"
if counter[category] > args.n_samples:
continue
counter[category] += 1
save_media(
output_dir=output_dir,
language=language,
category=category,
call_id=call_id,
early_media=early_media,
active_media=active_media,
sample_rate=sample_rate,
)
if early_media_label is not None and on_answer_label in ("voicemail",):
category = "04"
if counter[category] > args.n_samples:
continue
counter[category] += 1
save_media(
output_dir=output_dir,
language=language,
category=category,
call_id=call_id,
early_media=early_media,
active_media=active_media,
sample_rate=sample_rate,
)
if on_answer_label in ("voice",):
category = "05"
if counter[category] > args.n_samples:
continue
counter[category] += 1
save_media(
output_dir=output_dir,
language=language,
category=category,
call_id=call_id,
early_media=early_media,
active_media=active_media,
sample_rate=sample_rate,
)
if on_answer_ts > 25000:
category = "06"
if counter[category] > args.n_samples:
continue
counter[category] += 1
save_media(
output_dir=output_dir,
language=language,
category=category,
call_id=call_id,
early_media=early_media,
active_media=active_media,
sample_rate=sample_rate,
)
if category == "other":
if counter[category] > args.n_samples:
continue
counter[category] += 1
save_media(
output_dir=output_dir,
language=language,
category=category,
call_id=call_id,
early_media=early_media,
active_media=active_media,
sample_rate=sample_rate,
)
return
if __name__ == '__main__':
main()
|