Datasets:
License:
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
from collections import Counter, defaultdict | |
from glob import glob | |
from itertools import chain | |
import json | |
import os | |
from pathlib import Path | |
import sys | |
pwd = os.path.abspath(os.path.dirname(__file__)) | |
sys.path.append(os.path.join(pwd, '../../')) | |
import numpy as np | |
from scipy.io import wavfile | |
import torch | |
import torch.nn as nn | |
import shutil | |
from tqdm import tqdm | |
from project_settings import project_path | |
from toolbox.cv2.misc import show_image | |
from toolbox.python_speech_features.misc import wave2spectrum_image | |
area_code = 234 | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_dir", | |
default=(project_path / "trained_models/early_media_20220721").as_posix(), | |
type=str | |
) | |
parser.add_argument( | |
"--wav_dir", | |
default=(project_path / "data/early_media/{area_code}/wav".format(area_code=area_code)).as_posix(), | |
type=str | |
) | |
args = parser.parse_args() | |
return args | |
def demo1(): | |
args = get_args() | |
model_dir = Path(args.model_dir) | |
wav_dir = Path(args.wav_dir) | |
# model | |
seq2seq_encoder = torch.jit.load(model_dir / "seq2seq_encoder.pth") | |
seq2vec_encoder = torch.jit.load(model_dir / "seq2vec_encoder.pth") | |
classification_layer = torch.jit.load(model_dir / "classification_layer.pth") | |
with open(model_dir / "index2token.json", "r", encoding="utf-8") as f: | |
index2token = json.load(f) | |
# 读取文件 | |
for filename in tqdm(wav_dir.glob("*.wav")): | |
filename: Path = filename | |
# path, fn = os.path.split(filename) | |
try: | |
sample_rate, wave = wavfile.read(filename) | |
except UnboundLocalError: | |
os.remove(filename) | |
continue | |
if sample_rate != 8000: | |
raise AssertionError | |
if len(wave) < 1.0 * sample_rate: | |
os.remove(filename.as_posix()) | |
continue | |
max_wave_value = 32768.0 | |
wave = wave / max_wave_value | |
array = wave2spectrum_image( | |
wave, | |
sample_rate=8000, | |
xmax=10, | |
xmin=-50, | |
winlen=0.025, | |
winstep=0.01, | |
nfft=512, | |
n_low_freq=100, | |
) | |
# show_image(array.T) | |
array = np.array([array], dtype=np.float32) | |
array = torch.tensor(array, dtype=torch.float32) | |
mask: torch.IntTensor = torch.ones(size=array.shape[:-1], device=array.device, dtype=torch.int32) | |
array = seq2seq_encoder.forward(array, mask) | |
length = array.shape[-2] | |
m_win_size = 50 | |
m_win_step = 25 | |
labels = list() | |
idx = 0 | |
while True: | |
begin = idx * m_win_step | |
end = begin + m_win_size | |
if end > length: | |
break | |
window = array[:, begin:end, :] | |
window = seq2vec_encoder.forward(window) | |
logits = classification_layer(window) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
label_idx = probs.argmax(dim=-1).item() | |
label_str = index2token[str(label_idx)] | |
labels.append(label_str) | |
idx += 1 | |
counter = Counter(labels) | |
total = sum(counter.values()) | |
rate_dict = defaultdict(float) | |
for k, v in counter.items(): | |
rate_dict[k] = v / total | |
if rate_dict["voice"] > 0.1: | |
tgt = filename.parent / "voice" | |
elif rate_dict["music"] > 0.1: | |
tgt = filename.parent / "music" | |
elif rate_dict["bell"] > 0.1: | |
tgt = filename.parent / "bell" | |
else: | |
tgt = filename.parent / "mute" | |
tgt.mkdir(exist_ok=True) | |
try: | |
shutil.move(filename.as_posix(), tgt.as_posix()) | |
except shutil.Error: | |
fn = tgt / "{}_2.wav".format(filename.stem) | |
shutil.move(filename.as_posix(), fn) | |
return | |
if __name__ == '__main__': | |
demo1() | |