international_voice / examples /make_templates /step_1_wav_classification.py
HoneyTian's picture
update
7661f93
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import Counter, defaultdict
from glob import glob
from itertools import chain
import json
import os
from pathlib import Path
import sys
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, '../../'))
import numpy as np
from scipy.io import wavfile
import torch
import torch.nn as nn
import shutil
from tqdm import tqdm
from project_settings import project_path
from toolbox.cv2.misc import show_image
from toolbox.python_speech_features.misc import wave2spectrum_image
area_code = 234
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
default=(project_path / "trained_models/early_media_20220721").as_posix(),
type=str
)
parser.add_argument(
"--wav_dir",
default=(project_path / "data/early_media/{area_code}/wav".format(area_code=area_code)).as_posix(),
type=str
)
args = parser.parse_args()
return args
def demo1():
args = get_args()
model_dir = Path(args.model_dir)
wav_dir = Path(args.wav_dir)
# model
seq2seq_encoder = torch.jit.load(model_dir / "seq2seq_encoder.pth")
seq2vec_encoder = torch.jit.load(model_dir / "seq2vec_encoder.pth")
classification_layer = torch.jit.load(model_dir / "classification_layer.pth")
with open(model_dir / "index2token.json", "r", encoding="utf-8") as f:
index2token = json.load(f)
# 读取文件
for filename in tqdm(wav_dir.glob("*.wav")):
filename: Path = filename
# path, fn = os.path.split(filename)
try:
sample_rate, wave = wavfile.read(filename)
except UnboundLocalError:
os.remove(filename)
continue
if sample_rate != 8000:
raise AssertionError
if len(wave) < 1.0 * sample_rate:
os.remove(filename.as_posix())
continue
max_wave_value = 32768.0
wave = wave / max_wave_value
array = wave2spectrum_image(
wave,
sample_rate=8000,
xmax=10,
xmin=-50,
winlen=0.025,
winstep=0.01,
nfft=512,
n_low_freq=100,
)
# show_image(array.T)
array = np.array([array], dtype=np.float32)
array = torch.tensor(array, dtype=torch.float32)
mask: torch.IntTensor = torch.ones(size=array.shape[:-1], device=array.device, dtype=torch.int32)
array = seq2seq_encoder.forward(array, mask)
length = array.shape[-2]
m_win_size = 50
m_win_step = 25
labels = list()
idx = 0
while True:
begin = idx * m_win_step
end = begin + m_win_size
if end > length:
break
window = array[:, begin:end, :]
window = seq2vec_encoder.forward(window)
logits = classification_layer(window)
probs = torch.nn.functional.softmax(logits, dim=-1)
label_idx = probs.argmax(dim=-1).item()
label_str = index2token[str(label_idx)]
labels.append(label_str)
idx += 1
counter = Counter(labels)
total = sum(counter.values())
rate_dict = defaultdict(float)
for k, v in counter.items():
rate_dict[k] = v / total
if rate_dict["voice"] > 0.1:
tgt = filename.parent / "voice"
elif rate_dict["music"] > 0.1:
tgt = filename.parent / "music"
elif rate_dict["bell"] > 0.1:
tgt = filename.parent / "bell"
else:
tgt = filename.parent / "mute"
tgt.mkdir(exist_ok=True)
try:
shutil.move(filename.as_posix(), tgt.as_posix())
except shutil.Error:
fn = tgt / "{}_2.wav".format(filename.stem)
shutil.move(filename.as_posix(), fn)
return
if __name__ == '__main__':
demo1()