Datasets:
License:
first commit
Browse files- .gitignore +16 -0
- examples/evaluation/evaluation.py +302 -0
- examples/make_templates/step_1_wav_classification.py +148 -0
- examples/make_templates/step_2_wav_split.py +73 -0
- examples/make_templates/step_3_move_by_template.py +229 -0
- examples/make_templates/step_4_batch_wav_split.py +78 -0
- project_settings.py +12 -0
- requirements.txt +18 -0
- toolbox/__init__.py +6 -0
- toolbox/cv2/__init__.py +6 -0
- toolbox/cv2/misc.py +149 -0
- toolbox/python_speech_features/__init__.py +6 -0
- toolbox/python_speech_features/misc.py +104 -0
- toolbox/python_speech_features/silence_detect.py +81 -0
- toolbox/python_speech_features/wave_features.py +111 -0
.gitignore
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
.git/
|
3 |
+
.idea/
|
4 |
+
|
5 |
+
**/flagged/
|
6 |
+
**/log/
|
7 |
+
**/logs/
|
8 |
+
**/__pycache__/
|
9 |
+
|
10 |
+
data/
|
11 |
+
docs/
|
12 |
+
dotenv/
|
13 |
+
trained_models/
|
14 |
+
temp/
|
15 |
+
|
16 |
+
**/*.xlsx
|
examples/evaluation/evaluation.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import base64
|
5 |
+
from datetime import datetime
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
from pathlib import Path
|
9 |
+
import sys
|
10 |
+
|
11 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
12 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
13 |
+
|
14 |
+
import pandas as pd
|
15 |
+
import requests
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
from project_settings import project_path
|
19 |
+
|
20 |
+
|
21 |
+
def get_args():
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument("--host", default="127.0.0.1", type=str)
|
24 |
+
parser.add_argument("--port", default=2080, type=int)
|
25 |
+
|
26 |
+
parser.add_argument(
|
27 |
+
"--wav_dir",
|
28 |
+
default=(project_path / "data/wav/65").as_posix(),
|
29 |
+
type=str
|
30 |
+
)
|
31 |
+
parser.add_argument("--country_code", default=65, type=int)
|
32 |
+
|
33 |
+
args = parser.parse_args()
|
34 |
+
return args
|
35 |
+
|
36 |
+
|
37 |
+
# 1
|
38 |
+
label_map_1 = {
|
39 |
+
"bell": "bell",
|
40 |
+
"caller_id_blocked": "caller_id_blocked",
|
41 |
+
"can_not_be_completed": "can_not_be_completed",
|
42 |
+
"disconnected": "disconnected",
|
43 |
+
"disconnected_or_out_of_service_or_invalid_number": "disconnected_or_out_of_service_or_invalid_number",
|
44 |
+
"mute": "mute",
|
45 |
+
"not_accept_calls": "not_accept_calls",
|
46 |
+
"not_available": "not_available",
|
47 |
+
"out_of_service": "out_of_service",
|
48 |
+
"restricted_or_unavailable": "restricted_or_unavailable",
|
49 |
+
}
|
50 |
+
|
51 |
+
# 52
|
52 |
+
label_map_52 = {
|
53 |
+
"bell": "bell",
|
54 |
+
"mute": "mute",
|
55 |
+
|
56 |
+
"music": "music",
|
57 |
+
"voice": "music",
|
58 |
+
|
59 |
+
"arrears": "out_of_service",
|
60 |
+
|
61 |
+
"busy": "busy",
|
62 |
+
|
63 |
+
"invalid_number": "invalid_number",
|
64 |
+
|
65 |
+
"not_available": "not_available",
|
66 |
+
|
67 |
+
"not_available_or_out_of_service": "not_available_or_out_of_service",
|
68 |
+
"number_paused": "number_paused",
|
69 |
+
"out_of_service": "out_of_service",
|
70 |
+
"restricted": "out_of_service",
|
71 |
+
|
72 |
+
"power_off_or_out_of_service": "power_off_or_out_of_service",
|
73 |
+
"voicemail": "voicemail",
|
74 |
+
"voicemail_is_full": "voicemail_is_full",
|
75 |
+
}
|
76 |
+
|
77 |
+
# 63
|
78 |
+
label_map_63 = {
|
79 |
+
"bell": "bell",
|
80 |
+
"mute": "mute",
|
81 |
+
|
82 |
+
"music": "music",
|
83 |
+
"voice": "music",
|
84 |
+
"noise": "music",
|
85 |
+
|
86 |
+
"busy": "busy",
|
87 |
+
"call_forwarding": "call_forwarding",
|
88 |
+
"can_not_be_completed": "can_not_be_completed",
|
89 |
+
"invalid_number": "invalid_number",
|
90 |
+
"no_route_found": "no_route_found",
|
91 |
+
"not_reachable": "not_reachable",
|
92 |
+
"out_of_service": "out_of_service",
|
93 |
+
"unattended": "unattended",
|
94 |
+
"unattended_or_out_of_coverage_area": "unattended_or_out_of_coverage_area",
|
95 |
+
|
96 |
+
}
|
97 |
+
|
98 |
+
# 65
|
99 |
+
label_map_65 = {
|
100 |
+
"bell": "bell",
|
101 |
+
"mute": "mute",
|
102 |
+
|
103 |
+
"music": "music",
|
104 |
+
"voice": "music",
|
105 |
+
"noise": "music",
|
106 |
+
|
107 |
+
"busy": "busy",
|
108 |
+
"can_not_be_completed": "can_not_be_completed",
|
109 |
+
"invalid_number": "invalid_number",
|
110 |
+
"not_available": "not_available",
|
111 |
+
"not_responding": "not_responding",
|
112 |
+
"out_of_service": "out_of_service",
|
113 |
+
}
|
114 |
+
|
115 |
+
# 66
|
116 |
+
label_map_66 = {
|
117 |
+
"bell": "bell",
|
118 |
+
"mute": "mute",
|
119 |
+
|
120 |
+
"music": "music",
|
121 |
+
"voice": "music",
|
122 |
+
"noise": "music",
|
123 |
+
|
124 |
+
"invalid_number": "invalid_number",
|
125 |
+
"no_answer": "no_answer",
|
126 |
+
|
127 |
+
"not_reachable": "not_reachable",
|
128 |
+
"out_of_service": "out_of_service",
|
129 |
+
"voicemail": "voicemail",
|
130 |
+
|
131 |
+
}
|
132 |
+
|
133 |
+
# 91
|
134 |
+
label_map_91 = {
|
135 |
+
"bell": "bell",
|
136 |
+
"mute": "mute",
|
137 |
+
|
138 |
+
"music": "music",
|
139 |
+
"voice": "music",
|
140 |
+
"noise": "music",
|
141 |
+
|
142 |
+
"noise_music": "music",
|
143 |
+
"noise_mute": "music",
|
144 |
+
"noise_voice": "music",
|
145 |
+
|
146 |
+
"busy": "busy",
|
147 |
+
|
148 |
+
"can_not_connect": "not_reachable",
|
149 |
+
"forwarded": "forwarded",
|
150 |
+
"line_busy": "line_busy",
|
151 |
+
"not_available": "not_available",
|
152 |
+
"not_reachable": "not_reachable",
|
153 |
+
"invalid_number": "invalid_number",
|
154 |
+
"out_of_service": "out_of_service",
|
155 |
+
"out_of_service_area": "out_of_service_area",
|
156 |
+
"power_off": "power_off",
|
157 |
+
"unknown": "music",
|
158 |
+
|
159 |
+
}
|
160 |
+
|
161 |
+
# 234
|
162 |
+
label_map_234 = {
|
163 |
+
"bell": "bell",
|
164 |
+
"mute": "mute",
|
165 |
+
|
166 |
+
"music": "music",
|
167 |
+
"voice": "music",
|
168 |
+
"other": "music",
|
169 |
+
|
170 |
+
"busy": "busy",
|
171 |
+
"on_another_call": "busy",
|
172 |
+
|
173 |
+
"can_not_be_reached": "power_off",
|
174 |
+
"invalid_number": "invalid_number",
|
175 |
+
"not_available": "not_available",
|
176 |
+
"power_off": "power_off",
|
177 |
+
"power_off_or_out_of_service": "power_off",
|
178 |
+
"not_reachable": "power_off",
|
179 |
+
|
180 |
+
}
|
181 |
+
|
182 |
+
# 254
|
183 |
+
label_map_254 = {
|
184 |
+
"bell": "bell",
|
185 |
+
"mute": "mute",
|
186 |
+
|
187 |
+
"music": "music",
|
188 |
+
"voice": "music",
|
189 |
+
|
190 |
+
"busy": "busy",
|
191 |
+
"invalid_number": "invalid_number",
|
192 |
+
"not_available": "not_available",
|
193 |
+
"not_reachable": "power_off",
|
194 |
+
"out_of_service": "out_of_service",
|
195 |
+
"power_off": "power_off",
|
196 |
+
|
197 |
+
}
|
198 |
+
|
199 |
+
# 255
|
200 |
+
label_map_255 = {
|
201 |
+
"bell": "bell",
|
202 |
+
"mute": "mute",
|
203 |
+
|
204 |
+
"busy": "busy",
|
205 |
+
"can_not_be_connected": "can_not_be_connected",
|
206 |
+
"invalid_number": "invalid_number",
|
207 |
+
"no_answer": "no_answer",
|
208 |
+
|
209 |
+
|
210 |
+
"not_available": "not_available",
|
211 |
+
"not_reachable": "not_available",
|
212 |
+
|
213 |
+
"restricted": "restricted",
|
214 |
+
"switched_off_or_not_available": "switched_off_or_not_available",
|
215 |
+
}
|
216 |
+
|
217 |
+
# 886
|
218 |
+
label_map_886 = {
|
219 |
+
"bell": "bell",
|
220 |
+
"mute": "mute",
|
221 |
+
|
222 |
+
"music": "music",
|
223 |
+
"voice": "music",
|
224 |
+
"卡线": "music",
|
225 |
+
|
226 |
+
"busy": "busy",
|
227 |
+
"invalid_number": "invalid_number",
|
228 |
+
"not_available": "not_available",
|
229 |
+
"number_paused": "number_paused",
|
230 |
+
|
231 |
+
"power_off": "power_off",
|
232 |
+
"voicemail": "voicemail",
|
233 |
+
}
|
234 |
+
|
235 |
+
area_code2label_map = {
|
236 |
+
1: label_map_1,
|
237 |
+
52: label_map_52,
|
238 |
+
63: label_map_63,
|
239 |
+
65: label_map_65,
|
240 |
+
66: label_map_66,
|
241 |
+
91: label_map_91,
|
242 |
+
234: label_map_234,
|
243 |
+
254: label_map_254,
|
244 |
+
255: label_map_255,
|
245 |
+
886: label_map_886,
|
246 |
+
|
247 |
+
}
|
248 |
+
|
249 |
+
|
250 |
+
def main():
|
251 |
+
args = get_args()
|
252 |
+
|
253 |
+
wav_dir = Path(args.wav_dir)
|
254 |
+
|
255 |
+
url = "http://{host}:{port}/call_status".format(
|
256 |
+
host=args.host,
|
257 |
+
port=args.port,
|
258 |
+
)
|
259 |
+
headers = {
|
260 |
+
"Content-Type": "application/json"
|
261 |
+
}
|
262 |
+
|
263 |
+
label_map = area_code2label_map[args.country_code]
|
264 |
+
|
265 |
+
result = list()
|
266 |
+
for filename in tqdm(wav_dir.glob("*/*.wav")):
|
267 |
+
label = filename.parts[-2]
|
268 |
+
if label not in label_map.keys():
|
269 |
+
continue
|
270 |
+
label = label_map[label]
|
271 |
+
|
272 |
+
with open(filename, "rb") as f:
|
273 |
+
data = f.read()
|
274 |
+
|
275 |
+
base64string = base64.b64encode(data).decode("utf-8")
|
276 |
+
|
277 |
+
data = {
|
278 |
+
"country": args.country_code,
|
279 |
+
"record": base64string
|
280 |
+
}
|
281 |
+
|
282 |
+
resp = requests.post(url, headers=headers, data=json.dumps(data))
|
283 |
+
if resp.status_code != 200:
|
284 |
+
print("request failed, status_code: {}, text: {}.".format(resp.status_code, resp.text))
|
285 |
+
continue
|
286 |
+
js = resp.json()
|
287 |
+
predict = js["result"]["label_id"]
|
288 |
+
result.append({
|
289 |
+
"filename": filename,
|
290 |
+
"target": label,
|
291 |
+
"predict": predict,
|
292 |
+
"correct": 1 if label == predict else 0,
|
293 |
+
})
|
294 |
+
|
295 |
+
version = datetime.now().strftime("%Y%m%d_%H%M")
|
296 |
+
result = pd.DataFrame(result)
|
297 |
+
result.to_excel("evaluation_{}_{}.xlsx".format(args.country_code, version), index=False, encoding="utf_8_sig")
|
298 |
+
return
|
299 |
+
|
300 |
+
|
301 |
+
if __name__ == "__main__":
|
302 |
+
main()
|
examples/make_templates/step_1_wav_classification.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
from collections import Counter, defaultdict
|
5 |
+
from glob import glob
|
6 |
+
from itertools import chain
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
from pathlib import Path
|
10 |
+
import sys
|
11 |
+
|
12 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
13 |
+
sys.path.append(os.path.join(pwd, '../../'))
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
from scipy.io import wavfile
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import shutil
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
from project_settings import project_path
|
23 |
+
from toolbox.cv2.misc import show_image
|
24 |
+
from toolbox.python_speech_features.misc import wave2spectrum_image
|
25 |
+
|
26 |
+
|
27 |
+
area_code = 55
|
28 |
+
|
29 |
+
|
30 |
+
def get_args():
|
31 |
+
parser = argparse.ArgumentParser()
|
32 |
+
|
33 |
+
parser.add_argument(
|
34 |
+
"--model_dir",
|
35 |
+
default=(project_path / "trained_models/early_media_20220721").as_posix(),
|
36 |
+
type=str
|
37 |
+
)
|
38 |
+
parser.add_argument(
|
39 |
+
"--wav_dir",
|
40 |
+
default=(project_path / "data/early_media/{area_code}/wav".format(area_code=area_code)).as_posix(),
|
41 |
+
type=str
|
42 |
+
)
|
43 |
+
|
44 |
+
args = parser.parse_args()
|
45 |
+
return args
|
46 |
+
|
47 |
+
|
48 |
+
def demo1():
|
49 |
+
args = get_args()
|
50 |
+
|
51 |
+
model_dir = Path(args.model_dir)
|
52 |
+
wav_dir = Path(args.wav_dir)
|
53 |
+
|
54 |
+
# model
|
55 |
+
seq2seq_encoder = torch.jit.load(model_dir / "seq2seq_encoder.pth")
|
56 |
+
seq2vec_encoder = torch.jit.load(model_dir / "seq2vec_encoder.pth")
|
57 |
+
classification_layer = torch.jit.load(model_dir / "classification_layer.pth")
|
58 |
+
with open(model_dir / "index2token.json", "r", encoding="utf-8") as f:
|
59 |
+
index2token = json.load(f)
|
60 |
+
|
61 |
+
# 读取文件
|
62 |
+
for filename in tqdm(wav_dir.glob("*.wav")):
|
63 |
+
filename: Path = filename
|
64 |
+
# path, fn = os.path.split(filename)
|
65 |
+
try:
|
66 |
+
sample_rate, wave = wavfile.read(filename)
|
67 |
+
except UnboundLocalError:
|
68 |
+
os.remove(filename)
|
69 |
+
continue
|
70 |
+
if sample_rate != 8000:
|
71 |
+
raise AssertionError
|
72 |
+
|
73 |
+
if len(wave) < 1.0 * sample_rate:
|
74 |
+
os.remove(filename.as_posix())
|
75 |
+
continue
|
76 |
+
|
77 |
+
max_wave_value = 32768.0
|
78 |
+
wave = wave / max_wave_value
|
79 |
+
|
80 |
+
array = wave2spectrum_image(
|
81 |
+
wave,
|
82 |
+
sample_rate=8000,
|
83 |
+
xmax=10,
|
84 |
+
xmin=-50,
|
85 |
+
winlen=0.025,
|
86 |
+
winstep=0.01,
|
87 |
+
nfft=512,
|
88 |
+
n_low_freq=100,
|
89 |
+
)
|
90 |
+
# show_image(array.T)
|
91 |
+
|
92 |
+
array = np.array([array], dtype=np.float32)
|
93 |
+
array = torch.tensor(array, dtype=torch.float32)
|
94 |
+
mask: torch.IntTensor = torch.ones(size=array.shape[:-1], device=array.device, dtype=torch.int32)
|
95 |
+
|
96 |
+
array = seq2seq_encoder.forward(array, mask)
|
97 |
+
|
98 |
+
length = array.shape[-2]
|
99 |
+
|
100 |
+
m_win_size = 50
|
101 |
+
m_win_step = 25
|
102 |
+
|
103 |
+
labels = list()
|
104 |
+
idx = 0
|
105 |
+
while True:
|
106 |
+
begin = idx * m_win_step
|
107 |
+
end = begin + m_win_size
|
108 |
+
if end > length:
|
109 |
+
break
|
110 |
+
window = array[:, begin:end, :]
|
111 |
+
|
112 |
+
window = seq2vec_encoder.forward(window)
|
113 |
+
|
114 |
+
logits = classification_layer(window)
|
115 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
116 |
+
label_idx = probs.argmax(dim=-1).item()
|
117 |
+
|
118 |
+
label_str = index2token[str(label_idx)]
|
119 |
+
labels.append(label_str)
|
120 |
+
idx += 1
|
121 |
+
|
122 |
+
counter = Counter(labels)
|
123 |
+
total = sum(counter.values())
|
124 |
+
|
125 |
+
rate_dict = defaultdict(float)
|
126 |
+
for k, v in counter.items():
|
127 |
+
rate_dict[k] = v / total
|
128 |
+
|
129 |
+
if rate_dict["voice"] > 0.1:
|
130 |
+
tgt = filename.parent / "voice"
|
131 |
+
elif rate_dict["music"] > 0.1:
|
132 |
+
tgt = filename.parent / "music"
|
133 |
+
elif rate_dict["bell"] > 0.1:
|
134 |
+
tgt = filename.parent / "bell"
|
135 |
+
else:
|
136 |
+
tgt = filename.parent / "mute"
|
137 |
+
|
138 |
+
tgt.mkdir(exist_ok=True)
|
139 |
+
try:
|
140 |
+
shutil.move(filename.as_posix(), tgt.as_posix())
|
141 |
+
except shutil.Error:
|
142 |
+
fn = tgt / "{}_2.wav".format(filename.stem)
|
143 |
+
shutil.move(filename.as_posix(), fn)
|
144 |
+
return
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == '__main__':
|
148 |
+
demo1()
|
examples/make_templates/step_2_wav_split.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
ASR:
|
5 |
+
https://cloud.tencent.com/product/asr#mod2
|
6 |
+
|
7 |
+
https://huggingface.co/spaces/sanchit-gandhi/whisper-large-v2
|
8 |
+
https://huggingface.co/spaces/hf-audio/whisper-large-v3
|
9 |
+
"""
|
10 |
+
import argparse
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
from python_speech_features import sigproc
|
15 |
+
from scipy.io import wavfile
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
from project_settings import project_path
|
19 |
+
|
20 |
+
|
21 |
+
area_code = 91
|
22 |
+
|
23 |
+
|
24 |
+
def get_args():
|
25 |
+
parser = argparse.ArgumentParser()
|
26 |
+
parser.add_argument(
|
27 |
+
"--filename",
|
28 |
+
default=(project_path / "data/wav/91/91_wav/voice/91_1699977085057.wav").as_posix(),
|
29 |
+
type=str
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--templates_segmented_dir",
|
33 |
+
default=(project_path / "data/early_media_template/{area_code}/segmented".format(area_code=area_code)).as_posix(),
|
34 |
+
type=str
|
35 |
+
)
|
36 |
+
parser.add_argument("--win_size", default=2.0, type=float)
|
37 |
+
parser.add_argument("--win_len", default=0.5, type=float)
|
38 |
+
args = parser.parse_args()
|
39 |
+
return args
|
40 |
+
|
41 |
+
|
42 |
+
def main():
|
43 |
+
args = get_args()
|
44 |
+
|
45 |
+
filename = Path(args.filename)
|
46 |
+
templates_segmented_dir = Path(args.templates_segmented_dir)
|
47 |
+
|
48 |
+
templates_segmented_dir.mkdir(parents=True, exist_ok=True)
|
49 |
+
|
50 |
+
sample_rate, signal = wavfile.read(filename)
|
51 |
+
|
52 |
+
frames = sigproc.framesig(
|
53 |
+
sig=signal,
|
54 |
+
frame_len=args.win_size * sample_rate,
|
55 |
+
frame_step=args.win_len * sample_rate,
|
56 |
+
# winfunc=np.hamming
|
57 |
+
)
|
58 |
+
|
59 |
+
for j, frame in enumerate(frames):
|
60 |
+
to_filename = templates_segmented_dir / "{}_{}.wav".format(filename.stem, j)
|
61 |
+
|
62 |
+
frame = np.array(frame, dtype=np.int16)
|
63 |
+
wavfile.write(
|
64 |
+
filename=to_filename,
|
65 |
+
rate=sample_rate,
|
66 |
+
data=frame
|
67 |
+
)
|
68 |
+
|
69 |
+
return
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == '__main__':
|
73 |
+
main()
|
examples/make_templates/step_3_move_by_template.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
from collections import defaultdict
|
5 |
+
from glob import glob
|
6 |
+
import os
|
7 |
+
from pathlib import Path
|
8 |
+
import shutil
|
9 |
+
from typing import Dict, List, Callable
|
10 |
+
|
11 |
+
import cv2 as cv
|
12 |
+
import numpy as np
|
13 |
+
from python_speech_features import sigproc
|
14 |
+
from scipy.io import wavfile
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
from project_settings import project_path
|
18 |
+
from toolbox.python_speech_features.misc import wave2spectrum_image
|
19 |
+
|
20 |
+
|
21 |
+
area_code = 55
|
22 |
+
|
23 |
+
|
24 |
+
def get_args():
|
25 |
+
parser = argparse.ArgumentParser()
|
26 |
+
parser.add_argument(
|
27 |
+
"--templates_dir",
|
28 |
+
default=(project_path / "data/early_media/{area_code}/templates".format(
|
29 |
+
area_code=area_code
|
30 |
+
)).as_posix(),
|
31 |
+
type=str
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--wav_dir",
|
35 |
+
default=(project_path / "data/early_media/{area_code}/wav".format(area_code=area_code)).as_posix(),
|
36 |
+
type=str
|
37 |
+
)
|
38 |
+
args = parser.parse_args()
|
39 |
+
return args
|
40 |
+
|
41 |
+
|
42 |
+
class AudioTemplateMatch(object):
|
43 |
+
def __init__(self,
|
44 |
+
wave_to_spectrum: Callable,
|
45 |
+
sample_rate: int = 8000,
|
46 |
+
template_crop: float = 0.1,
|
47 |
+
threshold: float = 0.01,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
:param wave_to_spectrum: Callable, 传入 wave, np.ndarray, shape=(n,), 输出 spectrum, np.ndarray, shape=(time_steps, n_dim)
|
51 |
+
:param sample_rate:
|
52 |
+
:param template_crop:
|
53 |
+
:param threshold:
|
54 |
+
"""
|
55 |
+
self.wave_to_spectrum = wave_to_spectrum
|
56 |
+
self.sample_rate = sample_rate
|
57 |
+
self.template_crop = template_crop
|
58 |
+
self.threshold = threshold
|
59 |
+
|
60 |
+
self.dim = 100
|
61 |
+
|
62 |
+
self.label2templates: Dict[str, List[Dict[str, np.ndarray]]] = None
|
63 |
+
self.max_template_width: int = None
|
64 |
+
|
65 |
+
def load_template(self, path: str):
|
66 |
+
filename_pattern = os.path.join(path, '*/*.wav')
|
67 |
+
filename_list = glob(filename_pattern)
|
68 |
+
label2templates = defaultdict(list)
|
69 |
+
max_template_width = 0
|
70 |
+
|
71 |
+
print('loading templates.')
|
72 |
+
for filename in tqdm(filename_list):
|
73 |
+
path, fn = os.path.split(filename)
|
74 |
+
root_path, label = os.path.split(path)
|
75 |
+
|
76 |
+
# wave, sample_rate = librosa.load(filename, sr=self.sample_rate)
|
77 |
+
sample_rate, wave = wavfile.read(filename)
|
78 |
+
if sample_rate != self.sample_rate:
|
79 |
+
raise AssertionError('expected sample rate: {}, instead of: {}'.format(self.sample_rate, sample_rate))
|
80 |
+
if wave.dtype != np.int16:
|
81 |
+
raise AssertionError('expected wave dtype np.int16, instead of: {}'.format(wave.dtype))
|
82 |
+
|
83 |
+
if wave.shape[0] < self.sample_rate:
|
84 |
+
raise AssertionError('wave.shape: {}'.format(wave.shape))
|
85 |
+
|
86 |
+
# dtype np.int16
|
87 |
+
max_wave_value = 32768.0
|
88 |
+
wave = wave / max_wave_value
|
89 |
+
|
90 |
+
template = self.wave_to_spectrum(wave)
|
91 |
+
template = template[:, :self.dim]
|
92 |
+
|
93 |
+
template_width, _ = template.shape
|
94 |
+
if template_width > max_template_width:
|
95 |
+
max_template_width = template_width
|
96 |
+
label2templates[label].append({
|
97 |
+
'filename': filename,
|
98 |
+
'template': template,
|
99 |
+
})
|
100 |
+
|
101 |
+
self.label2templates = label2templates
|
102 |
+
self.max_template_width = max_template_width
|
103 |
+
return label2templates, max_template_width
|
104 |
+
|
105 |
+
def template_match_by_wave(self, wave: np.ndarray):
|
106 |
+
# dtype np.int16
|
107 |
+
max_wave_value = 32768.0
|
108 |
+
wave = wave / max_wave_value
|
109 |
+
|
110 |
+
spectrum = self.wave_to_spectrum(wave)
|
111 |
+
|
112 |
+
spectrum = spectrum[:, :self.dim]
|
113 |
+
result = self.template_match_by_spectrum(spectrum)
|
114 |
+
return result
|
115 |
+
|
116 |
+
def template_match_by_spectrum(self, spectrum: np.ndarray):
|
117 |
+
result = self._shadow_template_match(spectrum)
|
118 |
+
return result
|
119 |
+
|
120 |
+
def _shadow_template_match(self, spectrum):
|
121 |
+
matches = list()
|
122 |
+
|
123 |
+
if spectrum.shape[0] < self.max_template_width:
|
124 |
+
return matches
|
125 |
+
|
126 |
+
for label, templates in self.label2templates.items():
|
127 |
+
for templ in templates:
|
128 |
+
filename = templ['filename']
|
129 |
+
template = templ['template']
|
130 |
+
|
131 |
+
tw, _ = template.shape[:2]
|
132 |
+
c = int(tw * self.template_crop)
|
133 |
+
template = template[c: -c]
|
134 |
+
|
135 |
+
tw, th = template.shape[:2]
|
136 |
+
|
137 |
+
shadow_m = 3
|
138 |
+
shadow_spect = spectrum[:, :shadow_m]
|
139 |
+
shadow_templ = template[:, :shadow_m]
|
140 |
+
|
141 |
+
sqdiff_normed = cv.matchTemplate(image=shadow_spect, templ=shadow_templ, method=cv.TM_SQDIFF_NORMED)
|
142 |
+
min_val, _, min_loc, _ = cv.minMaxLoc(sqdiff_normed)
|
143 |
+
# print(min_val, min_loc)
|
144 |
+
if min_val > self.threshold:
|
145 |
+
continue
|
146 |
+
|
147 |
+
# master
|
148 |
+
_, x = min_loc
|
149 |
+
match_spectrum = spectrum[x:x+tw, :]
|
150 |
+
sqdiff_normed = cv.matchTemplate(image=match_spectrum, templ=template, method=cv.TM_SQDIFF_NORMED)
|
151 |
+
|
152 |
+
min_val, _, min_loc, _ = cv.minMaxLoc(sqdiff_normed)
|
153 |
+
# print(min_val, min_loc)
|
154 |
+
if min_val > self.threshold:
|
155 |
+
continue
|
156 |
+
|
157 |
+
matches.append({
|
158 |
+
'begin': x,
|
159 |
+
'width': tw,
|
160 |
+
'label': label,
|
161 |
+
'filename': filename,
|
162 |
+
'min_val': min_val,
|
163 |
+
})
|
164 |
+
return matches
|
165 |
+
|
166 |
+
|
167 |
+
def main():
|
168 |
+
args = get_args()
|
169 |
+
|
170 |
+
templates_dir = Path(args.templates_dir)
|
171 |
+
wav_dir = Path(args.wav_dir)
|
172 |
+
|
173 |
+
def wave_to_spectrum(wave: np.ndarray):
|
174 |
+
spectrum = wave2spectrum_image(wave=wave, sample_rate=8000)
|
175 |
+
spectrum = np.array(spectrum, dtype=np.float32)
|
176 |
+
spectrum /= 255
|
177 |
+
return spectrum
|
178 |
+
|
179 |
+
audio_template_match = AudioTemplateMatch(
|
180 |
+
wave_to_spectrum=wave_to_spectrum,
|
181 |
+
sample_rate=8000,
|
182 |
+
template_crop=0.1,
|
183 |
+
threshold=0.007,
|
184 |
+
)
|
185 |
+
audio_template_match.load_template(path=args.templates_dir)
|
186 |
+
|
187 |
+
for filename in tqdm(wav_dir.glob("voice/*.wav")):
|
188 |
+
filename: Path = filename
|
189 |
+
|
190 |
+
sample_rate, signal = wavfile.read(filename)
|
191 |
+
|
192 |
+
if sample_rate != 8000:
|
193 |
+
print('sample rate not 8000, filename: {}'.format(filename))
|
194 |
+
|
195 |
+
matches = audio_template_match.template_match_by_wave(wave=signal)
|
196 |
+
|
197 |
+
if len(matches) == 0:
|
198 |
+
continue
|
199 |
+
|
200 |
+
labels = [match['label'] for match in matches]
|
201 |
+
labels_ = [label for label in labels if label not in ("music",)]
|
202 |
+
|
203 |
+
if len(set(labels_)) > 1:
|
204 |
+
print("超过两个模板类别被匹配,请检测是否匹配正确。")
|
205 |
+
print(filename)
|
206 |
+
for match in matches:
|
207 |
+
print(match)
|
208 |
+
continue
|
209 |
+
|
210 |
+
if len(labels_) == 0:
|
211 |
+
label = "music"
|
212 |
+
else:
|
213 |
+
label = labels_[0]
|
214 |
+
|
215 |
+
if filename.parts[-2] != label:
|
216 |
+
tgt = filename.parent.parent / label
|
217 |
+
os.makedirs(tgt, exist_ok=True)
|
218 |
+
try:
|
219 |
+
shutil.move(filename.as_posix(), tgt.as_posix())
|
220 |
+
except shutil.Error:
|
221 |
+
print(filename)
|
222 |
+
print(tgt)
|
223 |
+
continue
|
224 |
+
|
225 |
+
return
|
226 |
+
|
227 |
+
|
228 |
+
if __name__ == '__main__':
|
229 |
+
main()
|
examples/make_templates/step_4_batch_wav_split.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from python_speech_features import sigproc
|
8 |
+
from scipy.io import wavfile
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
from project_settings import project_path
|
12 |
+
|
13 |
+
|
14 |
+
area_code = 1
|
15 |
+
|
16 |
+
|
17 |
+
def get_args():
|
18 |
+
parser = argparse.ArgumentParser()
|
19 |
+
parser.add_argument(
|
20 |
+
"--segmented_dir",
|
21 |
+
default=(project_path / "data/2s_wav/{area_code}".format(area_code=area_code)).as_posix(),
|
22 |
+
type=str
|
23 |
+
)
|
24 |
+
parser.add_argument(
|
25 |
+
"--templates_dir",
|
26 |
+
default=(project_path / "data/early_media_template/{area_code}".format(area_code=area_code)).as_posix(),
|
27 |
+
type=str
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--wav_dir",
|
31 |
+
default=(project_path / "data/wav/{area_code}".format(area_code=area_code)).as_posix(),
|
32 |
+
type=str
|
33 |
+
)
|
34 |
+
parser.add_argument("--win_size", default=2.0, type=float)
|
35 |
+
parser.add_argument("--win_len", default=2.0, type=float)
|
36 |
+
args = parser.parse_args()
|
37 |
+
return args
|
38 |
+
|
39 |
+
|
40 |
+
def main():
|
41 |
+
args = get_args()
|
42 |
+
|
43 |
+
segmented_dir = Path(args.segmented_dir)
|
44 |
+
templates_dir = Path(args.templates_dir)
|
45 |
+
wav_dir = Path(args.wav_dir)
|
46 |
+
|
47 |
+
segmented_dir.mkdir(parents=True, exist_ok=True)
|
48 |
+
templates_dir.mkdir(parents=True, exist_ok=True)
|
49 |
+
|
50 |
+
for filename in tqdm(wav_dir.glob("*/*.wav")):
|
51 |
+
# print(filename)
|
52 |
+
|
53 |
+
sample_rate, signal = wavfile.read(filename)
|
54 |
+
if len(signal) < args.win_size * sample_rate:
|
55 |
+
continue
|
56 |
+
|
57 |
+
frames = sigproc.framesig(
|
58 |
+
sig=signal,
|
59 |
+
frame_len=args.win_size * sample_rate,
|
60 |
+
frame_step=args.win_len * sample_rate,
|
61 |
+
# winfunc=np.hamming
|
62 |
+
)
|
63 |
+
|
64 |
+
for j, frame in enumerate(frames):
|
65 |
+
to_filename = segmented_dir / "{}_{}.wav".format(filename.stem, j)
|
66 |
+
|
67 |
+
frame = np.array(frame, dtype=np.int16)
|
68 |
+
wavfile.write(
|
69 |
+
filename=to_filename,
|
70 |
+
rate=sample_rate,
|
71 |
+
data=frame
|
72 |
+
)
|
73 |
+
|
74 |
+
return
|
75 |
+
|
76 |
+
|
77 |
+
if __name__ == '__main__':
|
78 |
+
main()
|
project_settings.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
|
7 |
+
project_path = os.path.abspath(os.path.dirname(__file__))
|
8 |
+
project_path = Path(project_path)
|
9 |
+
|
10 |
+
|
11 |
+
if __name__ == '__main__':
|
12 |
+
pass
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
setuptools_rust==1.1.2
|
2 |
+
gradio==2.4.6
|
3 |
+
opencv-contrib-python==3.4.10.37
|
4 |
+
flask==2.0.2
|
5 |
+
gevent==21.12.0
|
6 |
+
werkzeug==2.0.2
|
7 |
+
jsonschema==4.0.0
|
8 |
+
numpy==1.19.5
|
9 |
+
scipy==1.5.4
|
10 |
+
torch==1.10.2
|
11 |
+
tqdm==4.62.3
|
12 |
+
python_speech_features==0.6
|
13 |
+
scikit-learn==0.24.2
|
14 |
+
requests==2.26.0
|
15 |
+
gunicorn==20.1.0
|
16 |
+
pandas==1.1.5
|
17 |
+
xlrd==1.2.0
|
18 |
+
openpyxl==3.0.9
|
toolbox/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/cv2/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/cv2/misc.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import copy
|
4 |
+
from typing import List, Union
|
5 |
+
import cv2 as cv
|
6 |
+
|
7 |
+
|
8 |
+
def show_image(image, win_name='input image'):
|
9 |
+
# cv.namedWindow(win_name, cv.WINDOW_NORMAL)
|
10 |
+
cv.namedWindow(win_name, cv.WINDOW_AUTOSIZE)
|
11 |
+
|
12 |
+
cv.imshow(win_name, image)
|
13 |
+
cv.waitKey(0)
|
14 |
+
cv.destroyAllWindows()
|
15 |
+
return
|
16 |
+
|
17 |
+
|
18 |
+
def erode(labels: List[Union[str, int]], erode_label: Union[str, int], n: int = 1):
|
19 |
+
"""
|
20 |
+
遍历 labels 列表, 将连续的 erode_label 标签侵蚀 n 个.
|
21 |
+
"""
|
22 |
+
result = list()
|
23 |
+
in_span = False
|
24 |
+
count = 0
|
25 |
+
for idx, label in enumerate(labels):
|
26 |
+
if label == erode_label:
|
27 |
+
if not in_span:
|
28 |
+
in_span = True
|
29 |
+
count = 0
|
30 |
+
if count < n:
|
31 |
+
if len(result) == 0:
|
32 |
+
result.append(label)
|
33 |
+
else:
|
34 |
+
result.append(result[-1])
|
35 |
+
count += 1
|
36 |
+
continue
|
37 |
+
else:
|
38 |
+
result.append(label)
|
39 |
+
continue
|
40 |
+
elif label != erode_label:
|
41 |
+
if in_span:
|
42 |
+
in_span = False
|
43 |
+
|
44 |
+
for i in range(min(len(result), n)):
|
45 |
+
result[-i-1] = label
|
46 |
+
result.append(label)
|
47 |
+
continue
|
48 |
+
else:
|
49 |
+
result.append(label)
|
50 |
+
continue
|
51 |
+
|
52 |
+
result.append(label)
|
53 |
+
return result
|
54 |
+
|
55 |
+
|
56 |
+
def dilate(labels: List[Union[str, int]], dilate_label: Union[str, int], n: int = 1):
|
57 |
+
"""
|
58 |
+
遍历 labels 列表, 将连续的 dilate_label 标签扩张 n 个.
|
59 |
+
"""
|
60 |
+
result = list()
|
61 |
+
in_span = False
|
62 |
+
count = float('inf')
|
63 |
+
for idx, label in enumerate(labels):
|
64 |
+
if count < n:
|
65 |
+
result.append(dilate_label)
|
66 |
+
count += 1
|
67 |
+
continue
|
68 |
+
if label == dilate_label:
|
69 |
+
if not in_span:
|
70 |
+
in_span = True
|
71 |
+
|
72 |
+
for i in range(min(len(result), n)):
|
73 |
+
result[-i-1] = label
|
74 |
+
result.append(label)
|
75 |
+
continue
|
76 |
+
else:
|
77 |
+
result.append(label)
|
78 |
+
continue
|
79 |
+
else:
|
80 |
+
if in_span:
|
81 |
+
in_span = False
|
82 |
+
result.append(dilate_label)
|
83 |
+
count = 1
|
84 |
+
continue
|
85 |
+
else:
|
86 |
+
result.append(label)
|
87 |
+
continue
|
88 |
+
|
89 |
+
return result
|
90 |
+
|
91 |
+
|
92 |
+
def demo1():
|
93 |
+
labels = [
|
94 |
+
'voice', 'mute', 'mute', 'voice', 'voice', 'voice', 'voice', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'voice',
|
95 |
+
]
|
96 |
+
|
97 |
+
result = erode(
|
98 |
+
labels=labels,
|
99 |
+
erode_label='voice',
|
100 |
+
n=1,
|
101 |
+
|
102 |
+
)
|
103 |
+
print(len(labels))
|
104 |
+
print(len(result))
|
105 |
+
print(result)
|
106 |
+
return
|
107 |
+
|
108 |
+
|
109 |
+
def demo2():
|
110 |
+
labels = [
|
111 |
+
'voice', 'mute', 'mute', 'voice', 'voice', 'voice', 'voice', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'voice',
|
112 |
+
]
|
113 |
+
|
114 |
+
result = dilate(
|
115 |
+
labels=labels,
|
116 |
+
dilate_label='voice',
|
117 |
+
n=2,
|
118 |
+
|
119 |
+
)
|
120 |
+
print(len(labels))
|
121 |
+
print(len(result))
|
122 |
+
print(result)
|
123 |
+
|
124 |
+
return
|
125 |
+
|
126 |
+
|
127 |
+
def demo3():
|
128 |
+
import time
|
129 |
+
labels = ['mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'voice', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'bell', 'bell', 'bell', 'bell', 'bell', 'bell', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute', 'mute']
|
130 |
+
|
131 |
+
begin = time.time()
|
132 |
+
labels = erode(labels, erode_label='music', n=1)
|
133 |
+
labels = dilate(labels, dilate_label='music', n=1)
|
134 |
+
|
135 |
+
labels = dilate(labels, dilate_label='voice', n=2)
|
136 |
+
labels = erode(labels, erode_label='voice', n=2)
|
137 |
+
labels = erode(labels, erode_label='voice', n=1)
|
138 |
+
labels = dilate(labels, dilate_label='voice', n=3)
|
139 |
+
|
140 |
+
cost = time.time() - begin
|
141 |
+
print(cost)
|
142 |
+
print(labels)
|
143 |
+
return
|
144 |
+
|
145 |
+
|
146 |
+
if __name__ == '__main__':
|
147 |
+
# demo1()
|
148 |
+
# demo2()
|
149 |
+
demo3()
|
toolbox/python_speech_features/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/python_speech_features/misc.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import os
|
4 |
+
|
5 |
+
import cv2 as cv
|
6 |
+
import numpy as np
|
7 |
+
from python_speech_features import sigproc
|
8 |
+
from python_speech_features import mfcc
|
9 |
+
from sklearn import preprocessing
|
10 |
+
|
11 |
+
|
12 |
+
def wave2spectrum(sample_rate, wave, winlen=0.025, winstep=0.01, nfft=512):
|
13 |
+
"""计算功率谱图像"""
|
14 |
+
frames = sigproc.framesig(
|
15 |
+
sig=wave,
|
16 |
+
frame_len=winlen * sample_rate,
|
17 |
+
frame_step=winstep * sample_rate,
|
18 |
+
winfunc=np.hamming
|
19 |
+
)
|
20 |
+
spectrum = sigproc.powspec(
|
21 |
+
frames=frames,
|
22 |
+
NFFT=nfft
|
23 |
+
)
|
24 |
+
spectrum = spectrum.T
|
25 |
+
return spectrum
|
26 |
+
|
27 |
+
|
28 |
+
def wave2spectrum_image(
|
29 |
+
wave, sample_rate,
|
30 |
+
xmax=10, xmin=-50,
|
31 |
+
winlen=0.025, winstep=0.01, nfft=512,
|
32 |
+
n_low_freq=None
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
:return: numpy.ndarray, shape=(time_step, n_dim)
|
36 |
+
"""
|
37 |
+
spectrum = wave2spectrum(
|
38 |
+
sample_rate, wave,
|
39 |
+
winlen=winlen,
|
40 |
+
winstep=winstep,
|
41 |
+
nfft=nfft,
|
42 |
+
)
|
43 |
+
spectrum = np.log(spectrum, out=np.zeros_like(spectrum), where=(spectrum != 0))
|
44 |
+
spectrum = spectrum.T
|
45 |
+
gray = 255 * (spectrum - xmin) / (xmax - xmin)
|
46 |
+
gray = np.array(gray, dtype=np.uint8)
|
47 |
+
if n_low_freq is not None:
|
48 |
+
gray = gray[:, :n_low_freq]
|
49 |
+
|
50 |
+
return gray
|
51 |
+
|
52 |
+
|
53 |
+
def compute_delta(specgram: np.ndarray, win_length: int = 5):
|
54 |
+
"""
|
55 |
+
:param specgram: shape=[time_steps, n_mels]
|
56 |
+
:param win_length:
|
57 |
+
:return:
|
58 |
+
"""
|
59 |
+
n = (win_length - 1) // 2
|
60 |
+
|
61 |
+
specgram = np.array(specgram, dtype=np.float32)
|
62 |
+
|
63 |
+
kernel = np.arange(-n, n + 1, 1)
|
64 |
+
kernel = np.reshape(kernel, newshape=(2 * n + 1, 1))
|
65 |
+
kernel = np.array(kernel, dtype=np.float32) / 10
|
66 |
+
|
67 |
+
delta = cv.filter2D(
|
68 |
+
src=specgram,
|
69 |
+
ddepth=cv.CV_32F,
|
70 |
+
kernel=kernel,
|
71 |
+
)
|
72 |
+
return delta
|
73 |
+
|
74 |
+
|
75 |
+
def delta_mfcc_feature(signal, sample_rate):
|
76 |
+
"""
|
77 |
+
为 GMM UBM 声纹识别模型, 编写此代码.
|
78 |
+
|
79 |
+
https://github.com/pventrella20/Speaker_identification_-GMM-UBM-
|
80 |
+
https://github.com/MChamith/Speaker_verification_gmm_ubm
|
81 |
+
|
82 |
+
:param signal: np.ndarray
|
83 |
+
:param sample_rate: frequenza del file audio
|
84 |
+
:return:
|
85 |
+
"""
|
86 |
+
|
87 |
+
# shape=[time_steps, n_mels]
|
88 |
+
mfcc_feat = mfcc(
|
89 |
+
signal=signal,
|
90 |
+
samplerate=sample_rate,
|
91 |
+
winlen=0.025,
|
92 |
+
winstep=0.01,
|
93 |
+
numcep=20,
|
94 |
+
appendEnergy=True
|
95 |
+
)
|
96 |
+
|
97 |
+
mfcc_feat = preprocessing.scale(mfcc_feat)
|
98 |
+
delta = compute_delta(mfcc_feat)
|
99 |
+
combined = np.hstack(tup=(mfcc_feat, delta))
|
100 |
+
return combined
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == '__main__':
|
104 |
+
pass
|
toolbox/python_speech_features/silence_detect.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import numpy as np
|
4 |
+
from python_speech_features import sigproc
|
5 |
+
|
6 |
+
|
7 |
+
def calc_energy(signal, samplerate=16000, winlen=0.025, winstep=0.01):
|
8 |
+
"""
|
9 |
+
任意信号都可以看作是在电阻R=1 的电路上的电流 I. 则能量为 I^2
|
10 |
+
"""
|
11 |
+
signal = np.array(signal, dtype=np.float32)
|
12 |
+
power = np.square(signal)
|
13 |
+
|
14 |
+
# 分帧
|
15 |
+
frames = sigproc.framesig(power, winlen*samplerate, winstep*samplerate)
|
16 |
+
# 各帧能量总和.
|
17 |
+
energy = np.mean(frames, axis=-1)
|
18 |
+
return energy
|
19 |
+
|
20 |
+
|
21 |
+
def calc_zero_crossing_rate(signal, samplerate=16000, winlen=0.025, winstep=0.01):
|
22 |
+
"""过零率. """
|
23 |
+
signal = np.where(signal >= 0, 1, -1)
|
24 |
+
cross_zero = np.where(signal[1:] != signal[:-1], 1, 0)
|
25 |
+
|
26 |
+
frames = sigproc.framesig(cross_zero, winlen*samplerate, winstep*samplerate)
|
27 |
+
_, n = frames.shape
|
28 |
+
cross_zero_rate = np.mean(frames, axis=-1)
|
29 |
+
|
30 |
+
return cross_zero_rate
|
31 |
+
|
32 |
+
|
33 |
+
def detect_silence(signal, samplerate=16000, winlen=0.025, winstep=0.01, min_energy=0.01, min_cross_zero_rate=0.05):
|
34 |
+
"""静音段检测"""
|
35 |
+
energy = calc_energy(
|
36 |
+
signal=signal,
|
37 |
+
samplerate=samplerate,
|
38 |
+
winlen=winlen,
|
39 |
+
winstep=winstep,
|
40 |
+
)
|
41 |
+
cross_zero_rate = calc_zero_crossing_rate(
|
42 |
+
signal=signal,
|
43 |
+
samplerate=samplerate,
|
44 |
+
winlen=winlen,
|
45 |
+
winstep=winstep,
|
46 |
+
)
|
47 |
+
energy = energy < min_energy
|
48 |
+
cross_zero_rate = cross_zero_rate < min_cross_zero_rate
|
49 |
+
silence_signal = np.array(energy + cross_zero_rate, dtype=np.bool)
|
50 |
+
silence_signal = silence_signal.tolist()
|
51 |
+
|
52 |
+
frame_len = int(sigproc.round_half_up(winlen*samplerate))
|
53 |
+
frame_step = int(sigproc.round_half_up(winstep*samplerate))
|
54 |
+
|
55 |
+
silence_list = list()
|
56 |
+
last_s = False
|
57 |
+
for idx, s in enumerate(silence_signal):
|
58 |
+
if s is True:
|
59 |
+
if last_s is True:
|
60 |
+
silence = silence_list.pop(-1)
|
61 |
+
begin = silence[0]
|
62 |
+
count = silence[1]
|
63 |
+
silence_list.append([begin, count + 1])
|
64 |
+
else:
|
65 |
+
begin = frame_step * idx
|
66 |
+
silence_list.append([begin, 1])
|
67 |
+
|
68 |
+
last_s = s
|
69 |
+
|
70 |
+
result = list()
|
71 |
+
for silence in silence_list:
|
72 |
+
begin = silence[0]
|
73 |
+
count = silence[1]
|
74 |
+
end = begin + frame_step * (count - 1) + frame_len
|
75 |
+
result.append([begin, end])
|
76 |
+
|
77 |
+
return result
|
78 |
+
|
79 |
+
|
80 |
+
if __name__ == '__main__':
|
81 |
+
pass
|
toolbox/python_speech_features/wave_features.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from smart.python_speech_features.silence_detect import detect_silence
|
6 |
+
|
7 |
+
|
8 |
+
def calc_wave_features(signal, sample_rate):
|
9 |
+
assert signal.dtype == np.int16
|
10 |
+
assert sample_rate == 8000
|
11 |
+
|
12 |
+
signal = np.array(signal, dtype=np.float32)
|
13 |
+
# plt.plot(signal)
|
14 |
+
# plt.show()
|
15 |
+
|
16 |
+
l = len(signal)
|
17 |
+
|
18 |
+
# 均值
|
19 |
+
mean = np.mean(signal)
|
20 |
+
|
21 |
+
# 方差
|
22 |
+
var = np.var(signal)
|
23 |
+
|
24 |
+
# 百分位数
|
25 |
+
per = np.percentile(signal, q=[1, 25, 50, 75, 99])
|
26 |
+
per1, per25, per50, per75, per99 = per
|
27 |
+
|
28 |
+
# 静音段占比
|
29 |
+
silences = detect_silence(
|
30 |
+
signal=signal,
|
31 |
+
samplerate=sample_rate,
|
32 |
+
min_energy=120,
|
33 |
+
min_cross_zero_rate=0.01
|
34 |
+
)
|
35 |
+
silence_total = 0
|
36 |
+
for silence in silences:
|
37 |
+
li = silence[1] - silence[0]
|
38 |
+
silence_total += li
|
39 |
+
silence_rate = silence_total / l
|
40 |
+
|
41 |
+
# 非静音段方差
|
42 |
+
last_e = 0
|
43 |
+
non_silences = list()
|
44 |
+
for silence in silences:
|
45 |
+
b, e = silence
|
46 |
+
if b > last_e:
|
47 |
+
non_silences.append([last_e, b])
|
48 |
+
last_e = e
|
49 |
+
else:
|
50 |
+
if l > last_e:
|
51 |
+
non_silences.append([last_e, l])
|
52 |
+
|
53 |
+
# 静音段的数量
|
54 |
+
silence_count = len(non_silences)
|
55 |
+
|
56 |
+
if silence_count == 0:
|
57 |
+
mean_non_silence = 0
|
58 |
+
var_non_silence = 0
|
59 |
+
var_var_non_silence = 0
|
60 |
+
var_non_silence_rate = 1
|
61 |
+
else:
|
62 |
+
signal_non_silences = list()
|
63 |
+
for non_silence in non_silences:
|
64 |
+
b, e = non_silence
|
65 |
+
signal_non_silences.append(signal[b: e])
|
66 |
+
|
67 |
+
# 非静音段, 各段方差的方差.
|
68 |
+
v = list()
|
69 |
+
for signal_non_silence in signal_non_silences:
|
70 |
+
v.append(np.var(signal_non_silence))
|
71 |
+
var_var_non_silence = np.var(v)
|
72 |
+
|
73 |
+
signal_non_silences = np.concatenate(signal_non_silences)
|
74 |
+
# 非静音段整体均值
|
75 |
+
mean_non_silence = np.mean(signal_non_silences)
|
76 |
+
# 非静音段整体方差
|
77 |
+
var_non_silence = np.var(signal_non_silences)
|
78 |
+
# 非静音段整体方差 除以 整体方差
|
79 |
+
var_non_silence_rate = var_non_silence / var
|
80 |
+
|
81 |
+
# 全段, 分段方差的方差
|
82 |
+
sub_signal_list = np.split(signal, 20)
|
83 |
+
|
84 |
+
whole_var = list()
|
85 |
+
for sub_signal in sub_signal_list:
|
86 |
+
sub_var = np.var(sub_signal)
|
87 |
+
whole_var.append(sub_var)
|
88 |
+
var_var_whole = np.var(whole_var)
|
89 |
+
|
90 |
+
result = {
|
91 |
+
'mean': mean,
|
92 |
+
'var': var,
|
93 |
+
'per1': per1,
|
94 |
+
'per25': per25,
|
95 |
+
'per50': per50,
|
96 |
+
'per75': per75,
|
97 |
+
'per99': per99,
|
98 |
+
'silence_rate': silence_rate,
|
99 |
+
'mean_non_silence': mean_non_silence,
|
100 |
+
'silence_count': silence_count,
|
101 |
+
'var_var_non_silence': var_var_non_silence,
|
102 |
+
'var_non_silence': var_non_silence,
|
103 |
+
'var_non_silence_rate': var_non_silence_rate,
|
104 |
+
'var_var_whole': var_var_whole,
|
105 |
+
|
106 |
+
}
|
107 |
+
return result
|
108 |
+
|
109 |
+
|
110 |
+
if __name__ == '__main__':
|
111 |
+
pass
|