#!/usr/bin/python3 # -*- coding: utf-8 -*- import argparse from pathlib import Path import cv2 as cv from glob import glob import pandas as pd import numpy as np from scipy.io import wavfile from tqdm import tqdm from project_settings import project_path from toolbox.python_speech_features.misc import wave2spectrum_image def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--template_dir", default=(project_path / "data/early_media/62/templates/").as_posix(), type=str ) parser.add_argument( "--wav_dir", default=(project_path / "data/early_media/62/wav/").as_posix(), type=str ) args = parser.parse_args() return args def main(): args = get_args() template_dir = Path(args.template_dir) wav_dir = Path(args.wav_dir) max_wave_value = 32768.0 result = list() for template_file in template_dir.glob("*/*.wav"): template_label = template_file.parts[-2] _, template = wavfile.read(template_file) template = template / max_wave_value template = wave2spectrum_image( wave=template, sample_rate=8000, # n_low_freq=100 ) template = template.T for wav_file in tqdm(wav_dir.glob("*/*.wav")): wav_label = wav_file.parts[-2] _, signal = wavfile.read(wav_file) signal = signal[:12 * 8000] signal = signal / max_wave_value spectrum = wave2spectrum_image( wave=signal, sample_rate=8000, # n_low_freq=100 ) spectrum = spectrum.T sqdiff_normed = cv.matchTemplate(image=spectrum, templ=template, method=cv.TM_SQDIFF_NORMED) min_val, _, min_loc, _ = cv.minMaxLoc(sqdiff_normed) # msg = "label1: {}; label2: {}; min_val: {}".format(label1, label2, min_val) # print(msg) row = { "template_label": template_label, "template_file": template_file.as_posix(), "wav_label": wav_label, "wav_file": wav_file.as_posix(), "min_val": min_val, } result.append(row) result = pd.DataFrame(result) result.to_excel("result.xlsx", index=False) return if __name__ == '__main__': main()