#!/usr/bin/python3 # -*- coding: utf-8 -*- import os import cv2 as cv import numpy as np from python_speech_features import sigproc from python_speech_features import mfcc from sklearn import preprocessing def wave2spectrum(sample_rate, wave, winlen=0.025, winstep=0.01, nfft=512): """计算功率谱图像""" frames = sigproc.framesig( sig=wave, frame_len=winlen * sample_rate, frame_step=winstep * sample_rate, winfunc=np.hamming ) spectrum = sigproc.powspec( frames=frames, NFFT=nfft ) spectrum = spectrum.T return spectrum def wave2spectrum_image( wave, sample_rate, xmax=10, xmin=-50, winlen=0.025, winstep=0.01, nfft=512, n_low_freq=None ): """ :return: numpy.ndarray, shape=(time_step, n_dim) """ spectrum = wave2spectrum( sample_rate, wave, winlen=winlen, winstep=winstep, nfft=nfft, ) spectrum = np.log(spectrum, out=np.zeros_like(spectrum), where=(spectrum != 0)) spectrum = spectrum.T gray = 255 * (spectrum - xmin) / (xmax - xmin) gray = np.array(gray, dtype=np.uint8) if n_low_freq is not None: gray = gray[:, :n_low_freq] return gray def compute_delta(specgram: np.ndarray, win_length: int = 5): """ :param specgram: shape=[time_steps, n_mels] :param win_length: :return: """ n = (win_length - 1) // 2 specgram = np.array(specgram, dtype=np.float32) kernel = np.arange(-n, n + 1, 1) kernel = np.reshape(kernel, newshape=(2 * n + 1, 1)) kernel = np.array(kernel, dtype=np.float32) / 10 delta = cv.filter2D( src=specgram, ddepth=cv.CV_32F, kernel=kernel, ) return delta def delta_mfcc_feature(signal, sample_rate): """ 为 GMM UBM 声纹识别模型, 编写此代码. https://github.com/pventrella20/Speaker_identification_-GMM-UBM- https://github.com/MChamith/Speaker_verification_gmm_ubm :param signal: np.ndarray :param sample_rate: frequenza del file audio :return: """ # shape=[time_steps, n_mels] mfcc_feat = mfcc( signal=signal, samplerate=sample_rate, winlen=0.025, winstep=0.01, numcep=20, appendEnergy=True ) mfcc_feat = preprocessing.scale(mfcc_feat) delta = compute_delta(mfcc_feat) combined = np.hstack(tup=(mfcc_feat, delta)) return combined if __name__ == '__main__': pass