--- dataset_info: features: - name: audio_id dtype: string - name: language dtype: class_label: names: '0': en '1': de '2': fr '3': es '4': pl '5': it '6': ro '7': hu '8': cs '9': nl '10': fi '11': hr '12': sk '13': sl '14': et '15': lt '16': en_accented - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string - name: unified_entities sequence: class_label: names: '0': B-cell_line '1': B-character_name '2': B-language '3': B-disease '4': B-event '5': B-organization '6': B-character '7': B-origin '8': B-other '9': B-dish '10': B-relationship '11': B-artifact '12': B-work_of_art '13': B-facility '14': B-product '15': B-amenity '16': B-rating '17': B-actor '18': B-date '19': B-ratings_average '20': B-quantity '21': B-dna '22': B-quote '23': B-title '24': B-song '25': B-genre '26': B-cuisine '27': B-soundtrack '28': B-ordinal_number '29': B-protein '30': B-collection '31': B-money '32': B-person '33': B-project '34': B-group '35': B-review '36': B-percent '37': B-law '38': B-director '39': B-award '40': B-chemical '41': B-geopolitical_area '42': B-rna '43': B-restaurant '44': B-location '45': B-opinion '46': B-cell_type '47': B-trailer '48': B-cardinal_number '49': B-plot '50': B-corporation '51': B-time '52': I-cell_line '53': I-character_name '54': I-language '55': I-disease '56': I-event '57': I-organization '58': I-character '59': I-origin '60': I-other '61': I-dish '62': I-relationship '63': I-artifact '64': I-work_of_art '65': I-facility '66': I-product '67': I-amenity '68': I-rating '69': I-actor '70': I-date '71': I-ratings_average '72': I-quantity '73': I-dna '74': I-quote '75': I-title '76': I-song '77': I-genre '78': I-cuisine '79': I-soundtrack '80': I-ordinal_number '81': I-protein '82': I-collection '83': I-money '84': I-person '85': I-project '86': I-group '87': I-review '88': I-percent '89': I-law '90': I-director '91': I-award '92': I-chemical '93': I-geopolitical_area '94': I-rna '95': I-restaurant '96': I-location '97': I-opinion '98': I-cell_type '99': I-trailer '100': I-cardinal_number '101': I-plot '102': I-corporation '103': I-time '104': O - name: ontonotes_entities sequence: class_label: names: '0': O '1': B-cardinal number '2': B-date '3': I-date '4': B-person '5': I-person '6': B-group '7': B-geopolitical area '8': I-geopolitical area '9': B-law '10': I-law '11': B-organization '12': I-organization '13': B-percent '14': I-percent '15': B-ordinal number '16': B-money '17': I-money '18': B-work of art '19': I-work of art '20': B-facility '21': B-time '22': I-cardinal number '23': B-location '24': B-quantity '25': I-quantity '26': I-group '27': I-location '28': B-product '29': I-time '30': B-event '31': I-event '32': I-facility '33': B-language '34': I-product '35': I-ordinal number '36': I-language splits: - name: de num_bytes: 1104049942.714 num_examples: 1966 - name: fr num_bytes: 1054225315.44 num_examples: 1656 - name: nl num_bytes: 600447374.88 num_examples: 1120 - name: es num_bytes: 1152365703.024 num_examples: 1512 download_size: 3330860792 dataset_size: 3911088336.0580006 --- # Dataset Card for "spoken-ner" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)