jesse-radiata commited on
Commit
ca95bc9
·
verified ·
1 Parent(s): 279794e

Add files using upload-large-folder tool

Browse files
Files changed (2) hide show
  1. README.md +1 -1
  2. brain-structure.py +32 -38
README.md CHANGED
@@ -12,7 +12,7 @@ pretty_name: 3D Brain Structure MRI Scans
12
  ---
13
 
14
  ## 🧠 Dataset Summary
15
- 3794 3D structural MRI brain scans (T1-weighted MPRAGE NIfTI files) from 2607 individuals included in five publicly available datasets: [IXI](https://brain-development.org/ixi-dataset/), [DLBS](https://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html), [NKI-RS](https://fcon_1000.projects.nitrc.org/indi/enhanced/sharing_neuro.html), [OASIS-1](https://sites.wustl.edu/oasisbrains/home/oasis-1/), and [OASIS-2](https://sites.wustl.edu/oasisbrains/home/oasis-2/). Subjects have a mean age of 45 ± 24. 3773 scans come from cognitively normal individuals and 261 scans from individuals with an Alzheimer's disease clinical diagnosis. Scans dimensions are 113x137x113, 1.5mm^3 resolution, aligned to MNI152 space (see methods).
16
 
17
  Scans have been processed and all protected health information (PHI) is excluded. Only the skull-stripped scan, integer age, biological sex, clinical diagnosis, and scan metadata are included. [Radiata](https://radiata.ai/) compiles and processes publicly available neuroimaging datasets to create this open, unified, and harmonized dataset. For more information see https://radiata.ai/public-studies. Example uses including developing foundation-like models or tailored models for brain age prediction and disease classification.
18
 
 
12
  ---
13
 
14
  ## 🧠 Dataset Summary
15
+ 3794 3D structural MRI brain scans (T1-weighted MPRAGE NIfTI files) from 2607 individuals included in five publicly available datasets: [DLBS](https://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html), [IXI](https://brain-development.org/ixi-dataset/), [NKI-RS](https://fcon_1000.projects.nitrc.org/indi/enhanced/sharing_neuro.html), [OASIS-1](https://sites.wustl.edu/oasisbrains/home/oasis-1/), and [OASIS-2](https://sites.wustl.edu/oasisbrains/home/oasis-2/). Subjects have a mean age of 45 ± 24. 3773 scans come from cognitively normal individuals and 261 scans from individuals with an Alzheimer's disease clinical diagnosis. Scans dimensions are 113x137x113, 1.5mm^3 resolution, aligned to MNI152 space (see methods).
16
 
17
  Scans have been processed and all protected health information (PHI) is excluded. Only the skull-stripped scan, integer age, biological sex, clinical diagnosis, and scan metadata are included. [Radiata](https://radiata.ai/) compiles and processes publicly available neuroimaging datasets to create this open, unified, and harmonized dataset. For more information see https://radiata.ai/public-studies. Example uses including developing foundation-like models or tailored models for brain age prediction and disease classification.
18
 
brain-structure.py CHANGED
@@ -1,14 +1,14 @@
1
  import os
2
  import json
3
- import datasets
4
  import logging
 
5
 
6
  logger = logging.getLogger(__name__)
7
 
8
  _DESCRIPTION = """
9
  This dataset contains T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement.
10
- Each scan has an associated JSON sidecar with metadata, including fields such as subject
11
- demographics, scanner information, and a 'split' field indicating train/validation/test.
12
  """
13
 
14
  _CITATION = """
@@ -16,7 +16,7 @@ _CITATION = """
16
  author = {Jesse Brown and Clayton Young},
17
  title = {Brain-Structure: A Collection of Processed Structural MRI Scans},
18
  year = {2025},
19
- url = {https://huggingface.co/datasets/radiata-ai/brain-structure},
20
  note = {Version 1.0},
21
  publisher = {Hugging Face}
22
  }
@@ -25,21 +25,21 @@ _CITATION = """
25
  _HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure"
26
  _LICENSE = "ODC-By v1.0"
27
 
 
28
  class BrainStructureConfig(datasets.BuilderConfig):
29
  """
30
  Configuration class for the Brain-Structure dataset.
31
- You can define multiple configurations if needed (e.g. different subsets).
32
  """
33
  def __init__(self, **kwargs):
34
  super().__init__(**kwargs)
35
 
 
36
  class BrainStructure(datasets.GeneratorBasedBuilder):
37
  """
38
- A dataset loader for T1 .nii.gz files plus JSON sidecars.
39
- Each sidecar includes a 'split' field identifying whether the scan
40
- belongs to the train, validation, or test set.
41
 
42
- Usage Example:
43
  ds = load_dataset(
44
  "radiata-ai/brain-structure",
45
  name="all",
@@ -49,22 +49,20 @@ class BrainStructure(datasets.GeneratorBasedBuilder):
49
  """
50
 
51
  VERSION = datasets.Version("1.0.0")
 
 
52
  BUILDER_CONFIGS = [
53
  BrainStructureConfig(
54
  name="all",
55
  version=VERSION,
56
- description=(
57
- "All structural MRI data in a BIDS-like arrangement, labeled "
58
- "with train/validation/test splits."
59
- ),
60
  ),
61
  ]
62
  DEFAULT_CONFIG_NAME = "all"
63
 
64
  def _info(self):
65
  """
66
- Provides metadata about the dataset, including feature types
67
- and general dataset information.
68
  """
69
  return datasets.DatasetInfo(
70
  description=_DESCRIPTION,
@@ -102,34 +100,35 @@ class BrainStructure(datasets.GeneratorBasedBuilder):
102
 
103
  def _split_generators(self, dl_manager: datasets.DownloadManager):
104
  """
105
- Returns SplitGenerators for 'train', 'validation', and 'test'.
106
- Each split is identified by matching the 'split' field in the JSON sidecar.
 
107
  """
108
- data_dir = dl_manager.dataset_dir
 
 
 
 
109
 
110
  return [
111
  datasets.SplitGenerator(
112
  name=datasets.Split.TRAIN,
113
- gen_kwargs={"data_dir": data_dir, "desired_split": "train"},
114
  ),
115
  datasets.SplitGenerator(
116
  name=datasets.Split.VALIDATION,
117
- gen_kwargs={"data_dir": data_dir, "desired_split": "validation"},
118
  ),
119
  datasets.SplitGenerator(
120
  name=datasets.Split.TEST,
121
- gen_kwargs={"data_dir": data_dir, "desired_split": "test"},
122
  ),
123
  ]
124
 
125
  def _generate_examples(self, data_dir, desired_split):
126
  """
127
- Recursively scan the data_dir, locate JSON sidecar files, and yield
128
- examples whose 'split' field matches desired_split.
129
-
130
- Each yielded example includes:
131
- - 'nii_filepath': pointing to the corresponding .nii.gz file
132
- - 'metadata': dictionary of subject and scan information
133
  """
134
  id_ = 0
135
  for root, dirs, files in os.walk(data_dir):
@@ -139,26 +138,21 @@ class BrainStructure(datasets.GeneratorBasedBuilder):
139
  with open(sidecar_path, "r") as f:
140
  sidecar = json.load(f)
141
 
142
- # Only yield if 'split' matches the desired split
143
  if sidecar.get("split") == desired_split:
144
- # Attempt to locate the matching .nii.gz file
145
- # Typically the sidecar is named sub-xxx_ses-xxx_scandata.json
146
- # and the NIfTI file: sub-xxx_ses-xxx_T1w.nii.gz
147
- possible_nii_prefix = fname.replace("_scandata.json", "_T1w")
148
  nii_filepath = None
149
  for potential_file in files:
150
- if (potential_file.startswith(possible_nii_prefix)
151
  and potential_file.endswith(".nii.gz")):
152
  nii_filepath = os.path.join(root, potential_file)
153
  break
154
 
155
  if not nii_filepath:
156
- logger.warning(
157
- f"No corresponding .nii.gz file found for {sidecar_path}"
158
- )
159
  continue
160
 
161
- # Build the example
162
  yield id_, {
163
  "id": str(id_),
164
  "nii_filepath": nii_filepath,
@@ -167,7 +161,7 @@ class BrainStructure(datasets.GeneratorBasedBuilder):
167
  "participant_id": sidecar.get("participant_id", ""),
168
  "session_id": sidecar.get("session_id", ""),
169
  "study": sidecar.get("study", ""),
170
- "age": sidecar.get("age", 0), # default to 0 if missing
171
  "sex": sidecar.get("sex", ""),
172
  "clinical_diagnosis": sidecar.get("clinical_diagnosis", ""),
173
  "scanner_manufacturer": sidecar.get("scanner_manufacturer", ""),
 
1
  import os
2
  import json
 
3
  import logging
4
+ import datasets
5
 
6
  logger = logging.getLogger(__name__)
7
 
8
  _DESCRIPTION = """
9
  This dataset contains T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement.
10
+ Each scan has an associated JSON sidecar with metadata, including a 'split' field indicating
11
+ whether it's train, validation, or test.
12
  """
13
 
14
  _CITATION = """
 
16
  author = {Jesse Brown and Clayton Young},
17
  title = {Brain-Structure: A Collection of Processed Structural MRI Scans},
18
  year = {2025},
19
+ url = {https://huggingface.co/datasets/radiata-ai/brain-structure},
20
  note = {Version 1.0},
21
  publisher = {Hugging Face}
22
  }
 
25
  _HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure"
26
  _LICENSE = "ODC-By v1.0"
27
 
28
+
29
  class BrainStructureConfig(datasets.BuilderConfig):
30
  """
31
  Configuration class for the Brain-Structure dataset.
32
+ You can define multiple configurations if needed (e.g., different subsets).
33
  """
34
  def __init__(self, **kwargs):
35
  super().__init__(**kwargs)
36
 
37
+
38
  class BrainStructure(datasets.GeneratorBasedBuilder):
39
  """
40
+ A dataset loader for T1 .nii.gz files plus JSON sidecars indicating splits
41
+ (train, validation, test). Usage example:
 
42
 
 
43
  ds = load_dataset(
44
  "radiata-ai/brain-structure",
45
  name="all",
 
49
  """
50
 
51
  VERSION = datasets.Version("1.0.0")
52
+
53
+ # If you do NOT need multiple configs, you can define just one here:
54
  BUILDER_CONFIGS = [
55
  BrainStructureConfig(
56
  name="all",
57
  version=VERSION,
58
+ description="All structural MRI data in a BIDS-like arrangement, labeled with train/val/test splits."
 
 
 
59
  ),
60
  ]
61
  DEFAULT_CONFIG_NAME = "all"
62
 
63
  def _info(self):
64
  """
65
+ Returns DatasetInfo, including feature types and other meta information.
 
66
  """
67
  return datasets.DatasetInfo(
68
  description=_DESCRIPTION,
 
100
 
101
  def _split_generators(self, dl_manager: datasets.DownloadManager):
102
  """
103
+ Creates SplitGenerators for train, validation, and test.
104
+ No remote download is performed here. Instead, we reference
105
+ the local directory containing this script.
106
  """
107
+ # Typically, we use dl_manager.download_and_extract(...) for remote data,
108
+ # but here we assume the data is already in the same repo as this script.
109
+
110
+ # Path to the folder containing this script (and presumably the data).
111
+ data_dir = os.path.abspath(os.path.dirname(__file__))
112
 
113
  return [
114
  datasets.SplitGenerator(
115
  name=datasets.Split.TRAIN,
116
+ gen_kwargs={"data_dir": data_dir, "desired_split": "train"}
117
  ),
118
  datasets.SplitGenerator(
119
  name=datasets.Split.VALIDATION,
120
+ gen_kwargs={"data_dir": data_dir, "desired_split": "validation"}
121
  ),
122
  datasets.SplitGenerator(
123
  name=datasets.Split.TEST,
124
+ gen_kwargs={"data_dir": data_dir, "desired_split": "test"}
125
  ),
126
  ]
127
 
128
  def _generate_examples(self, data_dir, desired_split):
129
  """
130
+ Recursively walks data_dir, locates JSON sidecar files, and yields
131
+ examples that match the specified 'desired_split'.
 
 
 
 
132
  """
133
  id_ = 0
134
  for root, dirs, files in os.walk(data_dir):
 
138
  with open(sidecar_path, "r") as f:
139
  sidecar = json.load(f)
140
 
141
+ # Only yield if 'split' matches the requested split
142
  if sidecar.get("split") == desired_split:
143
+ # Locate corresponding NIfTI .nii.gz
144
+ nii_prefix = fname.replace("_scandata.json", "_T1w")
 
 
145
  nii_filepath = None
146
  for potential_file in files:
147
+ if (potential_file.startswith(nii_prefix)
148
  and potential_file.endswith(".nii.gz")):
149
  nii_filepath = os.path.join(root, potential_file)
150
  break
151
 
152
  if not nii_filepath:
153
+ logger.warning(f"No .nii.gz found for {sidecar_path}")
 
 
154
  continue
155
 
 
156
  yield id_, {
157
  "id": str(id_),
158
  "nii_filepath": nii_filepath,
 
161
  "participant_id": sidecar.get("participant_id", ""),
162
  "session_id": sidecar.get("session_id", ""),
163
  "study": sidecar.get("study", ""),
164
+ "age": sidecar.get("age", 0),
165
  "sex": sidecar.get("sex", ""),
166
  "clinical_diagnosis": sidecar.get("clinical_diagnosis", ""),
167
  "scanner_manufacturer": sidecar.get("scanner_manufacturer", ""),